首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The 14-kDa sterol carrier protein 2 (SCP2) domain is present in Eukaria, Bacteria and Archaea, and has been implicated in the transport and metabolism of lipids. We report the cloning, expression, purification and physicochemical characterization of a SCP2 from the yeast Yarrowia lipolytica (YLSCP2). Analytical size-exclusion chromatography, circular dichroism and fluorescence spectra, indicate that recombinant YLSCP2 is a well-folded monomer. Thermal unfolding experiments show that SCP2 maximal stability is at pH 7.0-9.0. YLSCP2 binds cis-parinaric acid and palmitoyl-CoA with KD values of 81+/-40 nM and 73+/-33 nM, respectively, sustaining for the first time the binding of fatty acids and their CoA esters to a nonanimal SCP2. The role of yeast SCP2 and other lipid binding proteins in transport, storage and peroxisomal oxidation of fatty acids is discussed.  相似文献   

3.
This report summarizes our recent studies on the protein known as sterol carrier protein (SCP) or fatty acid binding protein (FABP). SCP is a highly abundant, ubiquitous protein with multifunctional roles in the regulation of lipid metabolism and transport. SCP in vitro activates membrane-bound enzymes catalyzing cholesterol synthesis and metabolism, as well as those catalyzing long chain fatty acid metabolism. SCP also binds cholesterol and fatty acids with high affinity and rapidly penetrates cholesterol containing model membranes. Studies in vivo showed SCP undergoes a remarkable diurnal cycle in level and synthesis, induced by hormones and regulated in liver by translational events. SCP rapidly responds in vivo to physiological events and manipulations affecting lipid metabolism by changes in level. Thus SCP appears to be an important regulator of lipid metabolism. Preliminary evidence is presented that SCP is secreted by liver and intestine into blood and then taken up by tissues requiring SCP but incapable of adequate SCP synthesis.  相似文献   

4.
Huang H  Gallegos AM  Zhou M  Ball JM  Schroeder F 《Biochemistry》2002,41(40):12149-12162
Previous studies showed that the N-terminal 32 amino acids of sterol carrier protein-2 ((1-32)SCP(2)) comprise an amphipathic alpha-helix essential for SCP(2) binding to membranes [Huang et al. (1999) Biochemistry 38, 13231]. However, it is unclear whether membrane interaction of the (1-32)SCP(2) portion of SCP(2) is in itself sufficient to mediate intermembrane sterol transfer, possibly by altering membrane structure. In this study a fluorescent sterol exchange assay was used to resolve these issues and demonstrated that the SCP(2) N-terminal peptide (1-32)SCP(2) did not by itself enhance intermembrane sterol transfer but potentiated the ability of the SCP(2) protein to stimulate sterol transfer. Compared with SCP(2) acting alone, (1-32)SCP(2) potentiated the sterol transfer activity of SCP(2) by increasing the initial rate of sterol transfer by 2.9-fold and by decreasing the half-time of sterol transfer by 10-fold (from 11.6 to 1.2 min) without altering the size of the transferable fractions. The ability of a series of SCP(2) mutant N-terminal peptides to potentiate SCP(2)-mediated sterol transfer was directly correlated with membrane affinity of the respective peptide. N-Terminal peptide (1-32)SCP(2) did not potentiate intermembrane sterol transfer by binding sterol (dehydroergosterol), altering membrane fluidity (diphenylhexatriene) or membrane permeability (leakage assay). Instead, fluorescence lifetime measurements suggested that SCP(2) and (1-32)SCP(2) bound to membranes and thereby elicited a shift in membrane sterol microenvironment to become more polar. In summary, these data for the first time showed that while the N-terminal membrane binding domain of SCP(2) was itself inactive in mediating intermembrane sterol transfer, it nevertheless potentiated the ability of SCP(2) to enhance sterol transfer.  相似文献   

5.
A liposomal membrane model system was developed to examine the mechanism of spontaneous and protein-mediated intermembrane cholesterol transfer. Rat liver sterol carrier protein 2 (SCP2) and fatty acid binding protein (FABP, also called sterol carrier protein) both bind sterol. However, only SCP2 mediates sterol transfer. The exchange of sterol between small unilamellar vesicles (SUV) containing 35 mol % sterol was monitored with a recently developed assay [Nemecz, G., Fontaine, R. N., & Schroeder, F. (1988) Biochim. Biophys. Acta 943, 511-541], modified to continuous polarization measurement and not requiring separation of donor and acceptor membrane vesicles. As compared to spontaneous sterol exchange, 1.5 microM rat liver SCP2 enhanced the initial rate of sterol exchange between neutral zwwitterionic phosphatidylcholine SUV 2.3-fold. More important, the presence of acidic phospholipids (2.5-30 mol %) stimulated the SCP2-mediated increase in sterol transfer approximately 35-42-fold. Thus, acidic phospholipids strikingly potentiate the effect of SCP2 by 15-18 times as compared to SUV without negatively charged lipids. Rat liver FABP (up to 60 microM) was without effect on sterol transfer in either neutral zwitterionic or anionic phospholipid containing SUV. The potentiation of SCP2 action by acidic phospholipids was suppressed by high ionic strength, neomycin, and low pH. The results suggest that electrostatic interaction between SCP2 and negatively charged membranes may play an important role in the mechanism whereby SCP2 enhances intermembrane cholesterol transfer.  相似文献   

6.
Rat adrenocortical cells and preparations of plasma membrane and mitochondria have been employed to assess the effects of phospholipids and of sterol carrier protein2 (SCP2) on specific aspects of adrenal steroidogenesis. With intact cells, liposomal dispersions of cardiolipin caused significant stimulation of corticosterone output, while preparations of phosphatidylcholine, phosphatidylinositol, or the 4'-phosphate and the 4',5'-diphosphate derivatives of phosphatidylinositol were without effect. With the adrenal plasma membrane preparation, none of the added phospholipids affected either sodium fluoride or ACTH-responsive adenylate cyclase activity. With intact mitochondria, only cardiolipin, among the various phospholipids, tested, caused a concentration-dependent stimulation of pregnenolone production. However, even at the highest concentration of cardiolipin tested (500 microM), the stimulatory effect was only half that observed with 0.7 microM SCP2, and the two effectors were not synergistic. SCP2 caused a redistribution of cholesterol from mitochondrial outer to inner membranes, while cardiolipin, which is an activator of cytochrome P-450scc, had no effect on distribution of mitochondrial membrane cholesterol.  相似文献   

7.
8.
Plasma sterol levels in a family of sitosterolemia and xanthomatosis were determined by a high performance liquid chromatography. Three affected siblings manifested marked xanthomatosis including subcutaneous soft tissues and generalized atherosclerosis. Two other siblings as well as children of the patients did not show such clinical symptoms and signs. Plasma levels of cholesterol, sitosterol, campesterol, and cholestanol in three affected subjects were 190 +/- 18.5, 25.9 +/- 11.6, 16.1 +/- 7.8, 1.84 +/- 0.92 mg/dl (mean +/- SD), respectively. Four daughters of the affected subjects, who should be considered as obligatory heterozygotes, showed moderately increased levels of these sterols (195 +/- 41.7, 1.33 +/- 0.44, 1.56 +/- 0.69, 0.80 +/- 0.28 mg/dl), which were significantly higher than those of normal subjects. Treatment with cholestyramine had little effect on the increased plasma plant sterol levels, but markedly decreased plasma cholestanol concentrations in two affected siblings. This report presents the clinical features of the patients with sitosterolemia and xanthomatosis and also demonstrates that heterozygotes with this disorder have increased plasma levels of plant sterols as well as cholestanol, and suggests that this rare disease might be inherited as an autosomal co-dominant trait in certain cases. The data also indicate that cholestyramine administration was not effective in this family for treatment of sitosterolemia.  相似文献   

9.
10.
Subcellular distribution of Aedes aegypti sterol carrier protein-2 (AeSCP-2) and AeSCP-x was studied using electron microscopy. In both cultured A. aegypti cells and in the larval midgut, AeSCP-2 was detected mostly in the cytosol, with some labeling mitochondria and nucleus, but not in membranous vesicles. The widespread distribution of AeSCP-2 in the midgut epithelium is consistent with its potential lipid transfer function in all phases of cholesterol absorption. In contrast, AeSCP-x was found mostly in the peroxisome. Differences in the subcellular distribution of AeSCP-2 and AeSCP-x suggest that these two members of the SCP-2 gene family are functionally distinct. Overexpression of AeSCP-2 in A. aegypti cells showed increased localization of AeSCP-2 to cytosol, mitochondria, and nucleus. This is the first report on the nuclear distribution of an SCP. Overexpression of AeSCP-2 resulted in increased cholesterol incorporation in cells, suggesting that AeSCP-2 enhances cholesterol uptake.  相似文献   

11.
Hormonal triggering of the diurnal variation of sterol carrier protein   总被引:1,自引:0,他引:1  
Rat liver sterol carrier protein (SCP) is a major intracellular protein regulating lipid metabolism and transport. During a dark-light cycle, SCP undergoes a dramatic diurnal variation in synthesis and level, reflecting translational events. Several hormones participate in the control of SCP synthesis. Insulin was implicated when the circadian rhythm of SCP was lost in both diabetes and fasting, states where insulin is low. After a 12-h fast the amplitude of the diurnal rhythm is diminished; after a 48-h fast it disappears, although SCP synthesis and level remain high. When endogenous insulin secretion is increased in fasted rats by glucose administration, SCP increases 2-fold in less than 30 min. When food intake is manipulated, but the dark-light cycle is unchanged, the circadian rhythm of SCP corresponds to feeding patterns and not light cycling. During feeding, increases in SCP are triggered following the expected increase in serum insulin. However, SCP is rapidly and significantly elevated in response to insulin only when glucocorticoids are normally high or increased by injection of the synthetic glucocorticoid, dexamethasone. Hepatocyte SCP levels are also induced by a combination of insulin and dexamethasone (2.3-fold) or insulin alone (1.3-fold). Dexamethasone alone causes a striking depression of SCP (2.4-fold). Thus, insulin is a major regulator of the diurnal variation of SCP synthesis. Glucocorticoids and other hormones (e.g. triiodothyronine) are also essential for maximum induction of SCP but play permissive roles.  相似文献   

12.
Characterization of a cDNA encoding rat sterol carrier protein2   总被引:4,自引:0,他引:4  
Sterol carrier protein2 (SCP2) is a 13.2-kD protein that is thought to be involved in the intracellular transport of cholesterol. Using synthetic oligonucleotides based on the protein sequence of SCP2, a clone (SP43) was isolated from a rat liver cDNA library. The DNA sequence revealed that the cDNA could encode a polypeptide of 273 amino acids (28.9 kD) or 143 amino acids (15.3 kD) in which the carboxy-terminal 123 amino acids are identical to the SCP2 protein. RNA blot hybridization revealed that a variety of rat tissues contain a homologous RNA of a size similar to SP43 (approximately 1.5 kb). Levels of SCP2 mRNA increased in parallel with cytochrome P450scc mRNA in the immature gonadotropin-primed rat ovary. The isolation of a cDNA clone encoding SCP2 will facilitate studies on its role in cholesterol metabolism.  相似文献   

13.
Fluorescence anisotropy measurements indicated that physical changes occured in the lipids of plasma membranes of yeast sterol mutants but not in the plasma membrane of an ergosterol wild-type. Parallel experiments with model membrane liposomes verified that the physical changes in lipids observed in the sterol mutants are dependent on the sterol present and not the phospholipid composition. In addition, the physical changes in lipids observed in liposomes derived from wild-type phospholipids were eliminated by addition of ergosterol but persisted in the presence of cholesterol, cholestanol, ergostanol, or sterols from the sterol mutants. No physical changes in lipids were observed, however, in plasma membranes from a sterol auxotroph, even when the auxotroph was grown on cholesterol or cholestanol. The lack of physical changes in lipids in the sterol auxotroph may reflect the ability of the auxotroph to modify its phospholipid composition with respect to its sterol composition. These results indicate that high specificity ‘sparking’ sterol is not required for the regulation of overall bulk lipid properties of the plasma membrane.  相似文献   

14.
Filipin was used as a chemical probe for localization of sterols in freeze-fractured plasma membrane of KB cells. After adenovirus particle adsorption, marked changes occurred in the number and planar distribution of sterols and of intramembranous particles (IMPs). Filipin-sterol complexes became more abundant and both sterols and IMPs aggregated in a network pattern. It was suggested that redistribution of sterols and rearrangement of IMPs were interconnected phenomena, which represented an early cellular response to adenovirus attachment.  相似文献   

15.
Rat liver sterol carrier protein (SCP), a major regulator of lipid metabolism and transport, undergoes a rapid turnover and dramatic circadian variation in amount. The level of SCP was quantitated by a specific immunochemical assay using an antibody to homogeneous liver SCP. During a 12-h dark, 12-h light cycle, liver exhibits a biphasic pattern in SCP level. A 7-fold increase in SCP (i.e. from 1 to 7 mg/g of liver) occurs in the dark period, peaking at the midpoint and returning to basal levels by the beginning of the light period. A similar but smaller pattern of variation in SCP amount occurs in the light cycle. To elucidate the basic mechanism responsible for these changes in SCP level, the relative synthetic rate of SCP and mRNA functional activity for SCP were measured during the dark-light cycle. Alterations in the rate of SCP synthesis can account for the variations in SCP concentration. Although large changes occur in relative synthetic rate, no significant changes were found in the level of mRNA for SCP. Therefore, the circadian rhythm in SCP synthesis and amount does not reflect variations in the concentration of mRNA for SCP, but instead is caused by some mechanism controlling the efficiency of translation of SCP mRNA.  相似文献   

16.
Addition of homogeneous rat liver sterol carrier protein2 (SCP2) or an adrenal cytosolic fraction enhanced pregnenolone production by adrenal mitochondria. Pretreatment of SCP2 or adrenal cytosol with anti-SCP2 IgG abolished the stimulatory effect of both preparations on mitochondrial pregnenolone output. Incubation of mitochondria with aminoglutethimide, which blocks interaction of cholesterol with inner membrane cytochrome P-450scc, resulted in decreased pregnenolone production and a decreased level of mitoplast cholesterol. Addition of SCP2 to the incubation media caused an almost 2-fold increase in cholesterol associated with the mitoplast, but did not enhance mitochondrial pregnenolone production. Studies with reconstituted cytochrome P-450scc in phospholipid vesicles also suggested that SCP2 did not affect interaction of cholesterol with the hemoprotein. Treatment of rats with cycloheximide alone or with adrenocorticotropic hormone resulted in a dramatic increase in mitochondrial cholesterol. However, these mitochondria did not exhibit increased levels of pregnenolone output under control incubation conditions. When SCP2 was included in the mitochondrial incubation media, pregnenolone production was significantly increased over that observed with adrenal mitochondria from untreated or adrenocorticotropic hormone-treated rats. The results imply that SCP2 enhances mitochondrial pregnenolone production by improving transfer of mitochondrial cholesterol to cytochrome P-450scc on the inner membrane, but does not directly influence the interaction of substrate with the hemoprotein.  相似文献   

17.
18.
Ash KL  Berger T  Horner CM  Famula TR 《Theriogenology》1994,42(7):1217-1226
This study was designed to compare differences among porcine sperm plasma membrane proteins with the ability of spermatozoa to interact with zona-free hamster ova. Sperm plasma membrane vesicles were recovered from 24 ejaculates from 10 fertile boars, and from cauda epididymal spermatozoa from 3 fertile and 1 very subfertile boar. Solubilized sperm plasma membrane proteins were run on 1D SDS-PAGE gels, transferred to western blots, stained, and analyzed for quantity of protein per band by scanning laser densitometry. Variation in the quantities of individual sperm plasma membrane proteins in the 20 identified bands were statistically compared with the ability of spermatozoa from the same ejaculate to penetrate zona-free hamster ova. The percentages of plasma membrane protein present in 3 bands (90, 84 and 60 kD) were positively correlated with the ability of spermatozoa from the same ejaculate to fuse with zona-free hamster ova (P = 0.002, 0.01, 0.04; R = 0.53, 0.40, 0.38, respectively). The quantities of protein in 2 other bands (69 and 35 kD) were significantly but negatively correlated with the results of the zona-free hamster ova bioassay (P = 0.02, 0.01; R = -0.42, -0.37, respectively). The sperm plasma membrane profiles were quantitatively similar between the ejaculated samples and the fertile epididymal samples. Six epididymal sperm plasma membrane proteins were present in statistically different quantities in the subfertile boar sample and the 3 fertile controls. The 90 kD band positively correlated with the hamster ova bioassay in the ejaculated samples was not detected in the subfertile epididymal sperm plasma membrane sample. These results suggest that protein(s) in one or more of the 3 positively correlated ejaculated sperm plasma membrane protein bands may be involved in sperm-oocyte interaction.  相似文献   

19.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

20.
Hepatic sterol carrier protein-2 significantly enhances the microsomal conversion of cholesterol to 7 alpha-hydroxy-cholesterol. In the present work we have attempted to correlate the hepatic content of sterol carrier protein-2 with bile acid formation. We have determined the amount of this protein in a variety of physiological and experimental conditions, in which the rate of bile acid synthesis varies over a wide range, viz. during fetal development, in inbred strains of rats with different rates of bile acid synthesis, and in rats fed diets containing drugs which modify the rate of bile acid synthesis. The outcome of these experiments does not support the idea that sterol carrier protein-2 has any association with bile acid synthesis. From our data we further conclude that hepatic sterol carrier protein-2 is an adaptable protein because its level increases during development from the fetal to the post-weaning stage of the rat and since it can be modulated by oral administration of certain drugs. Furthermore, it is demonstrated that the level of sterol carrier protein-2 varies between six inbred strains of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号