首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion diseases are neurodegenerative disorders of the central nervous system that are associated with the misfolding of the prion protein (PrP). PrP is glycosylphosphatidylinositol-anchored, and therefore the hydrophobic membrane environment may influence the process of prion conversion. This study investigates how the morphology and mechanism of growth of prion aggregates on membranes are influenced by lipid composition. Atomic force microscopy is used to image the aggregation of prions on supported lipid bilayers composed of mixtures of the zwitterionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS). Circular dichroism shows that PrP interactions with POPS membranes result in an increase in β-sheet structure, whereas interactions with POPC do not influence PrP structure. Prion aggregation is observed on both zwitterionic and anionic membranes, and the morphology of the aggregates formed is dependent on the anionic phospholipid content of the membrane. The aggregates that form on POPC membranes have uniform dimensions and do not disrupt the lipid bilayer. The presence of POPS results in larger aggregates with a distinctive sponge-like morphology that are disruptive to membranes. These data provide detailed information on the aggregation mechanism of PrP on membranes, which can be described by classic models of growth.  相似文献   

2.
The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane. In the present work, we resolved the depth of insertion, the tilt angle, and the fundamental interactions for the soluble portion of Dengue E trimers (sE) associated with planar lipid bilayer membranes of various combinations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and cholesterol (CHOL) by neutron reflectivity (NR) and by molecular dynamics (MD) simulations. The results show that the tip of E containing the fusion loop (FL) is located at the interface of the headgroups and acyl chains of the outer leaflet of the lipid bilayers, in good agreement with prior predictions. The results also indicate that E tilts with respect to the membrane normal upon insertion, promoted by either the anionic lipid POPG or CHOL. The simulations show that tilting of the protein correlates with hydrogen bond formation between lysines and arginines located on the sides of the trimer close to the tip (K246, K247, and R73) and nearby lipid headgroups. These hydrogen bonds provide a major contribution to the membrane anchoring and may help to destabilize the target membrane.  相似文献   

3.
We present a new atom density profile (ADP) model and a statistical approach for extracting structural characteristics of lipid bilayers from X-ray and neutron scattering data. Models for five lipids with varying head and tail chemical composition in the fluid phase, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), are optimized using a simplex based method to simultaneously reproduce both neutron and X-ray scattering data. Structural properties are determined using statistical analysis of multiple optimal model structures. The method and models presented make minimal assumptions regarding the atomic configuration, while taking into account the underlying physical properties of the system. The more general model and statistical approach yield data with well defined uncertainties, indicating the precision in determining density profiles, atomic locations, and bilayer structural characteristics. Resulting bilayer structures include regions exhibiting large conformational variation. Due to the increased detail in the model, the results demonstrate the possibility of a distinct hydration layer within the interfacial (backbone) region.  相似文献   

4.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) + cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS) + cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

5.
The membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39), which selectively activates the parathyroid hormone 2 (PTH2) receptor (PTH2-R), has been studied by fluorescence and NMR spectroscopic techniques. Membrane binding would be the first step of a potential membrane-bound activation pathway which has been discussed for a number of neuropeptides and G-protein coupled receptors (GPCRs). Here, the orientation of TIP39 on the surface of membrane mimicking dodecyl-phosphocholine (DPC) micelles was monitored by Photo-CIDNP (chemically-induced dynamic nuclear polarization) NMR which indicates that both Trp25 and Tyr29 face the membrane surface. However, the PTH2 receptor is located in the hypothalamus membrane, for which a more realistic model is required. Therefore, liposomes containing different mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol were used for fluorescence and solid-state NMR spectroscopy. Fluorescence spectroscopy showed that a large proportion of TIP39 added to these liposomes binds to the membrane surface. Proton-decoupled 31P-MAS NMR is used to investigate the potential role of individual lipid headgroups in peptide binding. Significant line-broadening in POPC/cholesterol and POPC/POPS liposomes upon TIP39 association supports a surface binding model and indicates an interaction which is slightly mediated by the presence of POPS and cholesterol. Furthermore, smoothed order parameter profiles obtained from 2H powder spectra of liposomes containing POPC-d31 as bulk lipid in addition to POPS and cholesterol show that TIP39 does not penetrate beyond the headgroup region. Spectra of similar bilayers with POPS-d31 show a small increase in segmental chain order parameters which is interpreted as a small but specific interaction between the peptide and POPS. Our data demonstrate that TIP39 belongs to a class of signaling peptides that associate weakly with the membrane surface but do not proceed to insert into the membrane hydrophobic compartment.  相似文献   

6.
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine ∼ 6:4 POPC:cholesterol < POPC ∼ dioleoylphosphatidylcholine (DOPC) < 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DOPG) ≤ 1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] sodium salt (DOPS), indicating that the anionic lipids DOPG and DOPS most strongly stabilized the TM configuration. TM stabilization was near maximal at 20-30 mol% anionic lipid, which are physiologically relevant values. TM stabilization by anionic lipid was observed for hydrophobic sequences with a diverse set of sequences (including polyAla), diverse lengths (from 12 to 22 residues), and various cationic flanking residues (H, R, or K), but not when the flanking residues were uncharged. TM stabilization by anionic lipid was also dependent on the number of cationic residues flanking the hydrophobic sequence, but was still significant with only one cationic residue flanking each end of the peptide. These observations are consistent with TM-stabilizing effects being electrostatic in origin. However, Trp located more deeply in DOPS vesicles relative to DOPG vesicles, and peptides in DOPS vesicles showed increased helix formation relative to DOPG and all other lipid compositions. These observations fit a model in which DOPS anchors flanking residues near the membrane surface more strongly than does DOPG and/or increases the stability of the TM state to a greater degree than DOPG. We conclude that anionic lipids can have significant and headgroup structure-specific effects upon membrane protein topography.  相似文献   

7.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   

8.
Bovine seminal plasma (BSP) contains a family of phospholipid-binding proteins. The affinity of the protein BSP-A1/-A2 for lipid membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and POPC containing 30% (mol/mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or cholesterol, has been investigated by the isothermal titration calorimetry (ITC). This study confirms the association of these proteins to lipid bilayers, and provides a direct characterization of this exothermic process, at 37 °C. The measurements indicate that the protein affinity for lipid bilayers is modulated by the lipid composition, the lipid/protein ratio, and the temperature. The saturation lipid/protein ratio was increased in the presence of cholesterol and, to a lesser extent, of phosphatidylethanolamine, suggesting that it is modulated by the lipid acyl chain order. For all the investigated systems, the binding of BSP-A1/-A2 could not be modeled using a simple partitioning of the proteins between the aqueous and lipid phases. The existence of "binding sites", and lipid phase separations is discussed. The decrease of temperature, from 37 to 10 °C, converts the exothermic association of the proteins to the POPC bilayers to an endothermic process. A complementary 1-D and 2-D infrared spectroscopy study excludes the thermal denaturation of BSP-A1/-A2 as a contributor in the temperature dependence of the protein affinity for lipid bilayers. The reported findings suggest that changes in the affinity of BSP-A1/-A2 for lipid bilayers could be involved in modulating the association of these proteins to sperm membranes as a function of space and time; this would consequently modulate the extent of lipid extraction, including cholesterol, at a given place and given time.  相似文献   

9.
Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.  相似文献   

10.
Electrostatic interactions between negatively charged membranes and basic peptides/protein domains have been implicated as the driving force for several important processes, often involving membrane aggregation, fusion, or phase separation. Recently, acidic lipids were reported to both catalyze amyloid fiber formation by amyloidogenic proteins/peptides and induce formation of “amyloid-like” fibrils by nonamyloidogenic proteins. This study aims to characterize the structure of the aggregates of a basic protein (lysozyme) and negatively charged membranes (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine 4:1 mixture) at the molecular level, using Förster resonance energy transfer. It is concluded that lysozyme induced formation of a “pinched lamellar” structure, with reduced interbilayer distance in the regions where there is bound protein and increased interbilayer distance (stabilized by hydration repulsion) outside these areas.  相似文献   

11.
Summary Eosinophil granule major basic protein (MBP) is a potent toxin for mammalian cells and helminths, but the mechaism of its toxicity is not known. Here we tested whether MBP toxicity is exerted through its effect on the lipid bilayer of its targets. Liposomes prepared from synthetic phospholipids were used as targets for MBP and their properties examined by fluorescence and circular dichroism (CD) spectroscopy. MBP caused a change in the temperature transition profiles of acidic liposomes (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl serine or an equimolar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid) and induced their aggregation as shown by fluorescence resonance energy transfer experiments. The CD spectra and fluorescence characteristics of MBP itself were altered by its interaction with acidic lipids. Blue shifts in the emission maxima of the Trp, and of the dimethylaminonaphthyl moiety in acrylodan-labeled MBP, and a reduction in the effectiveness of quenching of Trp fluorescence by acrylamide were observed in the presence of acidic lipids. None of these effects were noted with zwitterionic lipids. This MBP : lipid bilayer interaction resulted in fusion and lysis of liposomes as indicated by the fluorescent indicator calcein. The results demonstrate that MBP associates with acidic lipids and that it disrupts, aggregates, fuses, and lyses liposomes prepared from such lipids. Such interaction might account for its wide range of toxicity.Abbreviations used Acrylodan 6-acryloyl-2-dimethylam-inonaphthalene - CD circular dichroism - DMPA 1,2-dimyrist-oyl-sn-glycero-3-phosphatidic acid - DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine - DPH 1,6-diphenyl-1,3,5-hexatriene - DTT dithiothreitol - FRET fluorescence resonance energy transfer - HEPES N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid - K sv Stern-Volmer constant - K q bimolecular quenching coefficient - em emission wavelength - ex excitation wavelength - MBP major basic protein - MOPC 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine - NBD-PE N-(7-nitro-2,1,3-benzo-xadiazol-4-yl)-phosphatidylethanolamine - nMBP native major basic protein - PBS phosphate-buffered saline - POPC 1-palmit-oyl-2-oleoyl-sn-glycero-3-phosphocholine - POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl serine - raMBP reduced and alkylated major basic protein - RHO-PE rhodamine-phosphatidylethanolamine - Tes N-tris[hydroxymethyl]-methyl-2-amino-ethane-sulfonic acid - Tris tris[hydroxymethyl]-amino-methane We would like to thank Dr. Predrag J.K. Ilich for assistance with initial data analysis, Dr. Salah S. Sedarous for the lifetime data and for helpful discussions, Dr. S. Yu. Venyaminov for helpful discussions, Mr. Kenneth D. Peters and Mr. Peter J. Callahan for assistance with some of the illustrations, and Ms. Jill Wagner for performing the radioimmunoassays. We would also like to thank Ms. Jill Kappers for excellent secretarial work. This work was supported in part by a Fellowship grant from the American Heart Association, Minnesota Affiliate, and by grants from the National Institutes of Health AI 09728 and from the Mayo Foundation. RIA-G is a Fellow of the American Heart Association.  相似文献   

12.
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts.  相似文献   

13.
Fusidic acid (FA), a narrow spectrum steroidal antibiotic, is useful for treatment of most skin, conjunctival, and corneal infections and also in infections caused by atypical microbes in the surface of the eye. Liposome electrokinetic capillary chromatography (LEKC) was used to study the interactions between FA and lipid membranes. Liposomes prepared by extrusion were composed of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl-sn-glysero-3-phosphor-l-serine (POPS), cholesterol, FA, and sphingomyelin (SM) in various molar ratios. 26 different liposome dispersions were studied as dispersed (pseudostationary) phase in LEKC. The hydrophobicities of the liposomes were evaluated by calculating the retention factors of model neutral steroids. The retention factors were calculated using the EOF and the effective electrophoretic mobilities of the analytes and the liposomes. The latter were separately determined by capillary electrophoresis with a polyacrylamide (PAA)-coated capillary. FA-lipid membrane interactions were studied by determining the retention factor of FA. In addition, liposomes prepared from lipids extracted from Escherichia coli bacterium were studied and used as dispersed phase in LEKC for interaction studies between FA and lipid membranes.  相似文献   

14.
Menke M  Gerke V  Steinem C 《Biochemistry》2005,44(46):15296-15303
By means of scanning force and fluorescence microscopy of artificial membranes immobilized on mica surfaces, the lateral organization of the annexin A2/S100A10 heterotetramer (annexin A2t) and its influence on the lateral organization of the lipids within the membrane have been elucidated. Planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) were prepared on atomically flat mica surfaces by the spreading of unilamellar vesicles. Fluorescence images of fluorescently labeled annexin A2t and scanning force microscopy images of nonlabeled protein bound to POPC/POPS bilayers show the formation of micrometer-sized lateral protein domains in the presence of 1 mM CaCl2. By means of scanning force microscopy, not only protein domains became discernible but also small membrane domains, which were attributed to POPS-enriched areas. A depletion of these POPS domains was observed in the vicinity of annexin A2t protein domains. These results indicate that annexin A2t is a peripheral membrane-binding complex capable of inducing lipid segregation.  相似文献   

15.
Domain formation in bacteria-mimetic membranes due to cationic peptide binding was recently proposed based on calorimetric data. We now use 2H solid-state NMR to critically examine the presence and absence of domains in bacterial membranes containing zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) lipids. Chain-perdeuterated POPE and POPG are used in single-component membranes, binary POPE/POPG (3:1) membranes, and membranes containing one of four cationic peptides: two antimicrobial peptides (AMPs) of the β-hairpin family of protegrin-1 (PG-1), and two cell-penetrating peptides (CPPs), HIV TAT and penetratin. 2H quadrupolar couplings were measured to determine the motional amplitudes of POPE and POPG acyl chains as a function of temperature. Homogeneously mixed POPE/POPG membranes should give the same quadrupolar couplings for the two lipids, whereas the presence of membrane domains enriched in one of the two lipids should cause distinct 2H quadrupolar couplings that reflect different chain disorder. At physiological temperature (308 K), we observed no or only small coupling differences between POPE and POPG in the presence of any of the cationic peptides. However, around ambient temperature (293 K), at which gel- and liquid-crystalline phases coexist in the peptide-free POPE/POPG membrane, the peptides caused distinct quadrupolar couplings for the two lipids, indicating domain formation. The broad-spectrum antimicrobial peptide PG-1 ordered ∼40% of the POPE lipids while disordering POPG. The Gram-negative selective PG-1 mutant, IB549, caused even larger differences in the POPE and POPG disorder: ∼80% of POPE partitioned into the ordered phase, whereas all of the POPG remained in the disordered phase. In comparison, TAT rigidified POPE and POPG similarly in the binary membrane at ambient temperature, indicating that TAT does not cause dynamic heterogeneity but interacts with the membrane with a different mechanism. Penetratin maintained the POPE order but disordered POPG, suggesting moderate domain separation. These results provide insight into the extent of domain formation in bacterial membranes and the possible peptide structural requirements for this phenomenon.  相似文献   

16.
Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data. At biomembrane-like packing (30–35 mN/m), GLTP uptake of BODIPY-glycolipid from POPC monolayers was nearly nonexistent but could be induced by reducing surface pressure to mirror packing in curvature-stressed bilayers. In contrast, 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) matrices supported robust BODIPY-glycolipid uptake by GLTP at both high and low surface pressures. Unexpectedly, negatively-charged cytosol-facing lipids, i.e., phosphatidic acid and phosphatidylserine, also supported BODIPY-glycolipid uptake by GLTP at high surface pressure. Remarkably, including both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (5 mol%) and POPE (15 mol%) in POPC synergistically activated GLTP at high surface pressure. Our study shows that matrix lipid headgroup composition, rather than molecular packing per se, is a key regulator of GLTP-fold function while demonstrating the novel capabilities of the microfluidics-based film balance for investigating protein-membrane interfacial interactions.  相似文献   

17.
In polarized infrared (IR) absorption experiments, dichroic values are used to study the structure and orientation of lipid molecules. From computer simulations, we obtained angular distributions of IR transition moment (TM) orientations of the stretch vibrations of CH2 groups of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholin (POPC) lipid bilayers in the gel (L ) and fluid (L ) phases. From these distributions, we calculated dichroic absorption values, as well as order parameters. We established a connection between the dichroic ratio R ATR , which is measured in IR-ATR setups, with the dichroic ratio D and the order parameter S zz . The calculated values compare well with experimental results for the fluid phase. In addition, we computed angular distributions of transition moments with respect to the tail director orientation for the gel and the fluid phases. Only small differences were found between the distributions in the symmetric stretch orientation, the asymmetric stretch orientation, and the C-H bond orientation of CH2 groups. The distributions of tail directors of POPC showed average tilts of 14.7° in the gel phase and 32.9° in the fluid phase. We developed a theory which makes it possible to calculate average tilt angles of tail directors in the gel phase from dichroic absorption values obtained from IR measurements for a wide range of lipids. Legendre coefficients were calculated from TM distributions. Order parameters, defined as the second Legendre polynomial, were found to closely approximate the TM distribution in lipid bilayers in the fluid phase.Abbreviations MD molecular dynamics - IR infrared - ATR attenuated total reflection - TM transition moment - POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-cholin - POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-phatidylglycerol - DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholin - NMR nuclear magnetic resonance  相似文献   

18.
The influenza virus matrix protein 2 (M2) assembles into a tetramer in the host membrane during viral uncoating and maturation. It has been used as a model system to understand the relative contributions of protein-lipid and protein-protein interactions to membrane protein structure and association. Here we investigate the effect of lipid chain length on the association of the M2 transmembrane domain into tetramers using Förster resonance energy transfer. We observe that the interactions between the M2 helices are much stronger in 1,2-dilauroyl-sn-glycero-3-phosphocholine than in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Thus, lipid chain length and bilayer thickness not only modulate peptide interactions, but could also be a major determinant of the association of transmembrane helices into functional membrane protein oligomers.  相似文献   

19.
The effect of phospholipid head group on the membrane-permeabilizing activity of amphotericin B (AmB) was examined using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) liposomes. The activity of AmB was evaluated as K+ influx measured as pH change inside liposomes by fluorescent measurements of 2′,7′-bis(carboxyethyl)-4 or 5-carboxyfluorescein (BCECF). AmB showed prominent permeability in POPC liposomes, whereas hardly inducing ion flux in POPG membrane. POPC added to POPG liposomes as a minor constituent markedly enhanced membrane permeability, indicating the importance of a phosphonocholine group of PC for the drug’s activity.  相似文献   

20.
Grazing incidence x-ray diffraction measurements were performed on single hydrated bilayers and monolayers of Ceramide/Cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocyholine at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing lipid leaflets. Depending on the lipid composition, these interactions lead to phase separation and formation of cholesterol crystals. The cholesterol and ceramide/cholesterol mixed phases were further characterized at 37°C by immunolabeling with specific antibodies recognizing ordered molecular arrays of cholesterol. Previous studies have shown that cholesterol may nucleate in artificial membranes to form thick two-dimensional bilayer crystals. The study herein demonstrates further growth of cholesterol into three-dimensional crystals. We believe that these results may provide further insight into the formation of cholesterol crystals in early stages of atherosclerosis inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号