首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an α/β-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids.  相似文献   

2.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

3.
A rapid assay of acyl-coenzyme A:lysolecithin acyltransferase activity   总被引:1,自引:0,他引:1  
A simple and rapid procedure for the assay of acyl-coenzyme A:1-acyl-sn-glycero-3-phosphocholine acyltransferase (lysolecithin acyltransferase, LLAT [EC 2.3.1.23]) activity in crude enzyme preparations is described. The incubation system utilizes lysolecithin and [1-14C]-oleoyl-coenzyme A as substrates. Labeled fatty acid released due to accompanying acyl-coenzyme A hydrolase [EC 3.1.2.2]activity is first removed by di-isopropyl ether extraction. The labeled lecithin produced due to LLAT action is then quantitatively recovered by partition of the incubation medium with di-isopropyl ether-n-butanol 60:40 (v/v). Selective extraction of the labeled lecithin formed and avoidance of customary thin-layer chromatographic isolation procedures permits assay of LLAT activity with excellent accuracy at a substantial saving of time. The entire assay can be completed in less than 30 min as compared to 2-3 hrs when following conventional procedures.  相似文献   

4.
The incorporation of tritiated fatty acids into proteins has been studied in cell-free extracts from mouse tissues. Incubation of heart extracts with [3H]tetradecanoic or [3H]palmitic acid in the presence of ATP and CoA resulted in the time-dependent and selective labeling of proteins (Mr = 60,000, 47,000, 42,000, 31,000, 16,000, and 13,000) which could be detected after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Two polypeptides (Mr = 47,000 and 42,000) reached a maximum in fatty acid incorporation very rapidly and were mainly localized in the membrane subcellular fractions of the extract. These proteins underwent transient labeling with [3H] tetradecanoyl-CoA, the maximum incorporation being obtained within 1 min. The fatty acid-labeled proteins from tissue extracts had the same properties as other proteins known to be acylated in intact cells, i.e. the acyl moiety was resistant to delipidation with organic solvents but could be hydrolyzed by treatment with neutral hydroxylamine. Screening of different tissues showed that extracts from liver and kidney also catalyze the ATP- and CoA-dependent formation of a similar group of fatty acid-acylated proteins. The results provide evidence for a group of proteins in mammalian tissues which selectively incorporate fatty acids in vitro and should be of value for further studies on the biosynthesis of acylated proteins.  相似文献   

5.
The aim of the present study was to characterize the acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity in human liver microsomes. Liver biopsies were obtained from patients undergoing elective cholecystectomy under highly standardized conditions. In 34 patients the enzyme activity of the microsomal fraction averaged 6.6 +/- 0.7 (mean +/- SEM) pmol.min-1.mg protein-1 in the absence of exogenous cholesterol. Freezing of the liver biopsy in liquid nitrogen increased the enzyme activity five- to sixfold. Similarly, freezing of the microsomal fraction prepared from unfrozen liver tissue increased the enzyme activity about twofold. These results may help to explain previous disparate results reported in the literature. The enhanced ACAT activity obtained by freezing was at least partly explained by a transfer of unesterified cholesterol to the microsomal fraction and possibly also by making the substrate(s) more available to the enzyme. Preincubation of the microsomal fraction, prepared from unfrozen liver tissue, with unlabeled cholesterol increased the enzyme activity about fivefold. This finding indicates that hepatic ACAT in humans can also utilize exogenous cholesterol as substrate. Addition of cholesterol to frozen microsomes prepared from unfrozen liver tissue increased the ACAT activity two- to threefold, whereas addition of cholesterol to microsomes prepared from frozen liver tissue did not further increase the enzyme activity. No evidence supporting the concept that ACAT is activated-inactivated by phosphorylation-dephosphorylation could be obtained by assaying the enzyme under conditions similar to those during which the human HMG-CoA reductase is inactivated-activated.  相似文献   

6.
Long-chain polyunsaturated fatty acids (PUFAs) accumulate in mammalian testis during puberty and are essential for fertility. To investigate whether lysophospholipid acyltransferases determine the PUFA composition of testicular phospholipids during pubertal development, we compared their mRNA expression, in vitro activity, and specificity with the lipidomic profile of major phospholipids. The accumulation of PUFAs in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine correlated with an induced lysophosphatidic acid acyltransferase (LPAAT)3 mRNA expression, increased microsomal LPAAT3 activity, and shift of LPAAT specificity to PUFA-coenzyme A. LPAAT3 was induced during germ cell maturation, as shown by immunofluorescence microscopy. Accordingly, differentiation of mouse GC-2spd(ts) spermatocytes into spermatides up-regulated LPAAT3 mRNA, increased the amount of polyunsaturated phospholipids, and shifted the specificity for the incorporation of deuterium-labeled docosahexaenoic acid toward phosphatidylcholine and phosphatidylethanolamine. Stable knockdown of LPAAT3 in GC-2spd(ts) cells significantly decreased microsomal LPAAT3 activity, reduced levels of polyunsaturated phosphatidylethanolamine species, and impaired cell proliferation/survival during geneticin selection. We conclude that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production.  相似文献   

7.
8.
A study of the final stages of the biosynthesis of the penicillins in Penicillium chrysogenum has revealed two types of enzyme. One hydrolyses phenoxymethyl penicillin to 6-aminopenicillanic acid (6-APA). The other, also obtained from Aspergillus nidulans, transfers a phenylacetyl group from phenylacetyl CoA to 6-APA. The acyltransferase, purified to apparent homogeneity, had a molecular mass of 40 kDa. It also catalyses the conversion of isopenicillin N (IPN) to benzylpenicillin (Pen G) and hydrolyses IPN to 6-APA. In the presence of SDS it dissociates, with loss of activity, into fragments of ca 30 and 10.5 kDa, but activity is regained when these fragments recombine in the absence of SDS.  相似文献   

9.
Complete separation of glycerophosphate acyltransferase and 1-acylglycerophosphate acyltransferase from Escherichia coli was obtained by sequential extraction with Triton X-100. Solubilized glycerophosphate acyltransferase was reconstituted by the cholate dispersion and gel filtration method in small unilamellar vesicles. 1-Acylglycerophosphate acyltransferase could not be solubilized from the membranes and was used in endogenous membrane fragments after detergent removal. Mixing of the two preparations and subsequent incubation in the presence of glycerol 3-phosphate, palmitoyl-CoA and oleoyl-CoA resulted in the efficient synthesis of phosphatidic acid. Inclusion of exogenous lysophosphatitic acid in the assay medium resulted in a dilution of the newly synthesized lysophosphatidate. By contrast, the synthesis of phosphatidic acid from glycerol 3-phosphate by the acyltransferases present in native membrane vesicles was barely influenced by the presence of exogenous lysophosphatidic acid. When comparing the utilization of membrane-associated 14C-labeled and newly generated 3H-labeled lysophosphatidic acid, the latter appeared to be the preferred substrate. These results indicate that lysophosphatidic acid, synthesized by glycerophosphate acyltransferase, is utilized by 1-acylglycerophosphate acyltransferase without prior mixing with the total membrane-associated pool of lysophosphatidic acid, and suggest a close proximity of the two enzymes in native E. coli membranes. This property of the acyltransferases is lost upon separation and reconstitution of enzyme activities.  相似文献   

10.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent K(m) values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9+/-2.1 microM and 13.9+/-0.3 microM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits approximately 85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl-oleate formation without influencing the retinyl-palmitate formation. Using this inhibitor, we estimate that approximately 64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

11.
Altered hepatic cholesterol metabolism has been implicated in the etiology of cholesterol gallstones. This hypothesis has been examined by determining acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in liver biopsies from 31 cholesterol gallstone patients and 12 control subjects. Hepatic ACAT activity in gallstone patients was decreased to one-third that in controls (P less than 0.001). No differences in hepatic homogenate or microsomal free and total cholesterol concentrations were observed between the two groups. However, marked increases in free (107%) and total (98%) cholesterol concentrations were found in the cytosolic fraction of liver biopsies from gallstone patients. The total phospholipid concentration of the liver homogenate fraction was unchanged in both groups; however, the microsomal total phospholipid concentration was reduced by 17% (P less than 0.01) in gallstone samples compared with controls. This difference did not result in a significantly increased microsomal cholesterol/phospholipid ratio for the gallstone group (0.180 +/- 0.030) compared with the control group (0.169 +/- 0.042). These results show that hepatic ACAT activity is significantly decreased in cholesterol gallstone patients. These changes in ACAT activity in livers of patients with cholesterol gallstones are consistent with the known increase in the amount of free cholesterol secreted in the bile of these patients. Thus, the changes in ACAT activity may contribute to the pathogenesis of cholesterol gallstones.  相似文献   

12.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

13.
14.
15.
The aim of the present work was to depict the metabolic pathways involved in extracellular production of lysophosphatidic acid (LPA) by adipocytes. LPA was followed by quantifying the accumulation of LPA in the incubation medium (conditioned medium, CM) of 3T3F442A adipocytes or human adipose tissue explants using a radioenzymatic assay. Surprisingly, after separation from the cells, the amount of LPA present in CM could be significantly increased by further incubation at 37 degrees C. This suggested the presence of a LPA-synthesizing activity (LPA-SA) in CM. LPA-SA appeared as a soluble activity which was inhibited by divalent ion chelators EDTA and phenanthrolin. The effect of EDTA was preferentially reverted by CoCl2, as described for a lysophospholipase D (lyso-PLD) activity previously identified in rat plasma. LPA concentration could also be increased by treatment with a bacterial PLD, demonstrating the presence of PLD-sensitive LPA precursors (mainly lysophosphatidylcholine) in adipocyte CM. LPA-SA could be increased by the addition of exogenous lysophosphatidylcholine, lysophosphatidylglycerol, or lyso-platelet activating factor, demonstrating that LPA-SA resulted from the action of a lyso-PLD. LPA-SA was not inhibited, but rather activated, by primary alcohol (ethanol and 1-butanol), suggesting that adipocyte lyso-PLD was not a classical PLD. Finally, LPA-SA was found to be weaker in CM of undifferentiated adipocyte (preadipocytes) compared with CM of differentiated adipocytes. In conclusion, our results reveal the existence of a secreted lyso-PLD activity regulated during adipocyte-differentiation and involved in extra cellular production of synthesis of LPA by adipocytes.  相似文献   

16.
The present study was conducted to examine esterification of retinol by testicular microsomes. The microsomes were isolated from rat testes and were incubated under varying assay conditions with [3H]retinol. [3H]Retinylpalmitate was identified by reversed-phase high-performance liquid chromatography as an esterified product. The rate of esterification was increased by the addition of a fatty acyl-CoA. Coenzyme A esters of oleic, palmitic and stearic acids were equally effective substrates for retinol esterification. A 17-fold increase was observed in the presence of palmitoyl-CoA when microsomes had been pretreated with hydroxylamine, a reagent that reacts with coenzyme A thioesters to form hydroxamic acids. The esterifying activity was stimulated by the addition of dithiothreitol (4 mM) and fatty acid-free bovine serum albumin (1 mg/ml). The optimal concentrations for retinol and palmitoyl-CoA were 40 microM and 30-40 microM, respectively. The enzyme activity was inhibited by p-hydroxymercuribenzoate, sodium taurocholate and 5,5'-dithiobis-(2-nitrobenzoic acid), but not by EDTA. The enzyme activity was highest in microsomes (36%). However, some activity was present in mitochondria (29%). These results clearly show the presence of a fatty acyl-CoA: retinol acyltransferase that catalyzes the esterification of retinol in rat testes.  相似文献   

17.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

18.
19.
Transacylation of capsaicin with triolein using a commercial lipase gave olvanil in an 85% yield at 70°C for 144 h. When olive oil was employed, the major product was olvanil (62%). Safflower oil gave a mixture of olvanil (39%) and linoleoyl vanillylamide (32%). Perilla oil gave linolenoyl vanillylamide (13%). Myristic acid and its methyl ester could be used as an acyl donor, and myristoyl vanillylamide was obtained in 20–78% using several lipases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号