首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freeze fracture techniques have been used to study the apical membrane of cells of the luminal epithelium of the rat uterus under various hormonal regimes. In the ovariectomized but otherwise untreated rat, intramembranous particles (IMPs) occur at a density of 1395 +/- 122 per micron 2; they appeared spherical and uniformly distributed. After 3 days treatment with estrogen, no change in appearance or density was found, but 3 days of progesterone treatment produced a significant increase in IMP density to 1622 +/- 104. Treatment with progesterone, with an additional dose of estrogen on day 3, is known to produce an epithelium receptive to the implanting blastocyst. In these conditions, the IMP density rose to 3818 +/- 337: rod-shaped particles and aggregations of IMPs were seen, and some particle arrays resembling gap junctions, in addition to the isolated spherical particles.  相似文献   

2.
The anterior sternal epithelium of terrestrial isopods transports cuticular Ca2+ to and from large sternal CaCO3 deposits. We analyzed the anterior and posterior sternal epithelium by the means of the freeze-etch technique and measured the size distribution and density of intramembrane particles (IMPs) during three different molting stages. At least three IMP size classes around 4.5, 7.7, and 9.4 nm can be distinguished on the P-face of the apical and basolateral plasma membrane. An additional size class of around 12.8 nm is restricted to the apical compartment. In the anterior sternal epithelium, the density of these large particles changes by a factor of 1.9 during the molt cycle, suggesting a role in CaCO3 formation and/or resorption. The density of the smaller IMPs rises transiently by a factor of 1.3 in the posterior sternal epithelium only. The IMP density of the basolateral plasma membrane increases significantly by a factor of 1.4 and 1.3 in the anterior and posterior sternal epithelia, respectively. The results indicate that increases in the IMP density contribute to the differentiation to an increased transport activity during the cyclic enlargements of the plasma membrane surface area in the anterior sternal epithelium.  相似文献   

3.
The anterior sternal epithelium of terrestrial isopods transports cuticular Ca(2+) to and from large sternal CaCO(3) deposits. We analyzed the anterior and posterior sternal epithelium by the means of the freeze-etch technique and measured the size distribution and density of intramembrane particles (IMPs) during three different molting stages. At least three IMP size classes around 4.5, 7.7, and 9.4 nm can be distinguished on the P-face of the apical and basolateral plasma membrane. An additional size class of around 12.8 nm is restricted to the apical compartment. In the anterior sternal epithelium, the density of these large particles changes by a factor of 1.9 during the molt cycle, suggesting a role in CaCO(3) formation and/or resorption. The density of the smaller IMPs rises transiently by a factor of 1.3 in the posterior sternal epithelium only. The IMP density of the basolateral plasma membrane increases significantly by a factor of 1.4 and 1.3 in the anterior and posterior sternal epithelia, respectively. The results indicate that increases in the IMP density contribute to the differentiation to an increased transport activity during the cyclic enlargements of the plasma membrane surface area in the anterior sternal epithelium.  相似文献   

4.
The detailed knowledge of the molecular process of mechanotransduction is still an unsolved question. The investigation of the intramembranous structure of the cutaneous mechanoreceptors may play an important role in elucidating this problem. In this relation, Herbst sensory corpuscles in ducks were studied for the first time using the freeze-etching and thin sectioning techniques. Herbst corpuscles have the basic structural components valid for most of the encapsulated mechanoreceptors in mammals: a capsule made of perineural cells, a lamellar complex of modified Schwann cells, surrounding the non-myelinated part of the receptor nerve fiber and its ending. Freeze-etching replicas reveal that the plasmalemmae of the capsule cells, modified Schwann cells and axolemmae of parts of the nerve fiber differ in both density and pattern of distribution of intramembranous particles (IMPs) as well as IMP size. On all the plasmalemmae the IMP density is higher on the P-face (2000–3300?µm?2) than the respective E-face (800–1500?µm?2). The axolemma of the ending of the receptor nerve fiber expresses higher density of IMPs than its shaft. The mean IMP size for all the plasmalemmae varies between 5.5 and 7.5?nm. Many tight junctions occur between the capsule cells. These results indicate that the non-myelinated axolemma as well as the plasmalemmae of other components of Herbst corpuscles are specialized in terms of content and distribution of IMPs. The IMPs may represent various kinds of mechanosensitive channel proteins or related membrane-bound proteins participating in the process of mechanotransduction.  相似文献   

5.
Axonal and axolemmal development of fibers from rat optic nerves in which gliogenesis was severely delayed by systemic injection of 5-azacytidine (5-AZ) was examined by freeze-fracture electron microscopy. In neonatal (0-2 days) rat optic nerves, all fibers lack myelin, whereas in the adult, virtually all axons are myelinated. The axolemma of neonatal premyelinated fibers is relatively undifferentiated. The P-fracture face (P-face) displays a moderate (approximately 550/micron 2) density of intramembranous particles (IMPs), whereas the E-fracture face (E-face) has few IMPs (approximately 125/micron 2) present. By 14 days of age, approximately 25% of the axons within control optic nerves are ensheathed or myelinated, with the remaining axons premyelinated. The ensheathed and myelinated fibers display increased axonal diameter compared to premyelinated axons, and these larger caliber fibers exhibit marked axonal membrane differentiation. Notably, the P-face IMP density of ensheathed and myelinated fibers is substantially increased compared to premyelinated axolemma, and, at nodes of Ranvier, the density of E-face particles is moderately high (approximately 1300/micron 2), in comparison to internodal or premyelinated E-face axolemma. In optic nerves from 14-day-old 5-AZ-treated rats, few oligodendrocytes are present, and the percentage of myelinated fibers is markedly reduced. Despite delayed gliogenesis, some unensheathed axons within 5-AZ-treated optic nerves display an increased axonal diameter compared to premyelinated fibers. Most of these large caliber fibers also exhibit a substantial increase in P-face IMP density. Small (less than 0.4 micron) diameter unensheathed axons within treated optic nerves maintain a P-face IMP density similar to that of control premyelinated fibers. Regions of increased E-face particle density were not observed. The results demonstrate that some aspects of axolemma differentiation continue despite delayed gliogenesis and the absence of glial ensheathment, and suggest that axolemmal ultrastructure is, at least in part, independent of glial cell association.  相似文献   

6.
《The Journal of cell biology》1984,98(4):1434-1443
Intramembrane particles (IMPs) of the plasmalemma of mature, synapsing neurons are evenly distributed along the axon shaft. In contrast, IMPs of growing olfactory axons form density gradients: IMP density decreases with increasing distance from the perikarya, with a slope that depends upon IMP size (Small, R., and K. H. Pfenninger, 1984, J. Cell Biol., 98: 1422-1433). These IMP density gradients resemble Gaussian tails, but they are much more accurately described by the equations formulated for diffusion in a system with a moving boundary (a Stefan Problem), using constants that are dependent upon IMP size. The resulting model predicts a shallow, nearly linear IMP density profile at early stages of growth. Later, this profile becomes gradually transformed into a steep nonlinear gradient as axon elongation proceeds. This prediction is borne out by the experimental evidence. The diffusion coefficients calculated from this model range from 0.5 to 1.8 X 10(-7) cm2/s for IMPs between 14.8 and 3.6 nm, respectively. These diffusion coefficients are linearly dependent upon the inverse IMP diameter in accordance with the Stokes-Einstein relationship. The measured viscosity is approximately 7 centipoise. Our findings indicate (a) that most IMPs in growing axons reach distal locations by lateral diffusion in the plasma membrane, (b) that IMPs-- or complexes of integral membrane proteins--can diffuse at considerably higher rates than previously reported for iso-concentration systems, and (c) that the laws of diffusion determined for macroscopic systems are applicable to the submicroscopic membrane system.  相似文献   

7.
Using freeze-fracture electron microscopy, the numerical particle distribution in the fertilized Nassarius egg plasma membrane has been analyzed in four areas at different positions along the animal-vegetal axis of the egg. These areas can be distinguished by distinct microvilli patterns and differences in microvilli densities. In all areas, more IMPs (intramembrane particles) are present on the P face than on the corresponding E face. The ratio of the number of IMPs present on E and P face is similar in all areas (0.48-0.55) except for the most animal part of the vegetal hemisphere, where relatively more IMPs remain attached to the exterior half of the fractured membrane (E/P ratio = 0.88). The IMP density at the vegetal pole of the egg is considerably higher than in the animal hemisphere and in the animal part of the vegetal hemisphere. This difference is due to an increased number of IMPs in all size classes (4-18 nm). In the area adjacent to the vegetal pole the density of particles is also higher than in the two more animal areas, but here the difference is exclusively due to the smaller IMP size classes (4-8 nm). Statistical analysis of our data reveals that the area adjacent to the vegetal pole patch is significantly different from the other areas with respect to the distribution of the IMPs over the different IMP size classes. These results demonstrate the polar organization of the Nassarius egg plasma membrane. The possible role of this surface heterogeneity in the spatial organization of the egg cell and the later embryo is discussed.  相似文献   

8.
Freeze-fracture quantitative analysis reveals three different plasma membrane (PM) domains in the unfertilized egg of the anuran Discoglossus pictus . One of these is specific to the sperm entrance site (D1). where the plasma membrane shows a larger number of intramembranous particles (IMP) than the rest of the egg surface. Such an increment is due to a markedly higher number of the IMPs anchored to the P-face. The two other domains (D2 and D3) are characterized by a lower IMP density at the P-face with respect to D1. The IMP density decreased within 10 min after fertilization by about 33% in all domains observed, probably due to the insertion of new membrane through exocytosis. The possibility that the IMPs located in D1 may represent putative plasma membrane proteins playing a role in sperm-egg interaction and/or in egg activation is discussed.  相似文献   

9.
The plasmalemma of mature and growing olfactory axons of the bullfrog has been studied by freeze-fracture. Intramembrane particles (IMPs) of mature olfactory axons are found to be uniformly distributed along the shaft. However, during growth, a decreasing gradient of IMP density is evident along the somatofugal axis. The size histograms of axolemmal IMPs from different segments of growing nerve reveal regional differences in the particle composition. The distribution of each individual size class of particles along the growing nerve forms a decreasing gradient in the somatofugal direction; the slope of these gradients varies directly with particle diameter. These size-dependent density gradients are consistent with a process of lateral diffusion of membrane components that are inserted proximally into the plasma membrane. The membrane composition of the growth cone, however, appears to be independent of these diffusion gradients; it displays a mosaic pattern of discrete domains of high and low particle densities. The relative IMP profiles of these growth cone regions are similar to one another but contain higher densities of large IMPs than the neighboring axonal shaft. The shifting distributions of intramembrane particles that characterize the sprouting neuron give new insights into cellular processes that may underlie the establishment of the functional polarity of the neuron and into the dynamics of axolemmal maturation.  相似文献   

10.
Channel forming integral protein of 28 kD (CHIP28) functions as a water channel in erythrocytes, kidney proximal tubule and thin descending limb of Henle. CHIP28 morphology was examined by freeze-fracture EM in proteoliposomes reconstituted with purified CHIP28, CHO cells stably transfected with CHIP28k cDNA, and rat kidney tubules. Liposomes reconstituted with HPLC-purified CHIP28 from human erythrocytes had a high osmotic water permeability (Pf0.04 cm/s) that was inhibited by HgCl2. Freeze-fracture replicas showed a fairly uniform set of intramembrane particles (IMPs); no IMPs were observed in liposomes without incorporated protein. By rotary shadowing, the IMPs had a diameter of 8.5 +/- 1.3 nm (mean +/- SD); many IMPs consisted of a distinct arrangement of four smaller subunits surrounding a central depression. IMPs of similar size and appearance were seen on the P-face of plasma membranes from CHIP28k-transfected (but not mock-transfected) CHO cells, rat thin descending limb (TDL) of Henle, and S3 segment of proximal straight tubules. A distinctive network of complementary IMP imprints was observed on the E-face of CHIP28-containing plasma membranes. The densities of IMPs in the size range of CHIP28 IMPs, determined by non-linear regression, were (in IMPs/microns 2): 2,494 in CHO cells, 5,785 in TDL, and 1,928 in proximal straight tubules; predicted Pf, based on the CHIP28 single channel water permeability of 3.6 x 10(-14) cm3/S (10 degrees C), was in good agreement with measured Pf of 0.027 cm/S, 0.075 cm/S, and 0.031 cm/S, respectively, in these cell types. Assuming that each CHIP28 monomer is a right cylindrical pore of length 5 nm and density 1.3 g/cm3, the monomer diameter would be 3.2 nm; a symmetrical arrangement of four cylinders would have a greatest diameter of 7.2 nm, which after correction for the thickness of platinum deposit, is similar to the measured IMP diameter of approximately 8.5 nm. These results provide a morphological signature for CHIP28 water channels and evidence for a tetrameric assembly of CHIP28 monomers in reconstituted proteoliposomes and cell membranes.  相似文献   

11.
We have examined the redistribution of acetylcholine receptor (AChR) intramembrane particles (IMPs) when AChR clusters of cultured rat myotubes are experimentally disrupted and allowed to reform. In control myotubes, the AChR IMPs are evenly distributed within the AChR domains of cluster membrane. Shortly after addition of azide to disrupt clusters, IMPs become unevenly scattered, with some microaggregation. After longer treatment, IMPs are depleted from AChR domains with no further change in IMP distribution. Contact domains of clusters are relatively poor in IMPs both before and after cluster dispersal. Upon visualization with fluorescent alpha-bungarotoxin, some AChR in azide-treated samples appear as small, bright spots. These spots do not correspond to microaggregates seen in freeze-fracture replicas, and probably represent receptors that have been internalized. The internalization rate is insufficient to account completely for the loss of IMPs from clusters, however. During reformation of AChR clusters upon removal of azide, IMP concentration in receptor domains increases. At early stages of reformation, IMPs appear in small groups containing compact microaggregates. At later times, AChR domains enlarge and IMPs within them assume the evenly spaced distribution characteristic of control clusters. These observations suggest that the disruption of clusters is accompanied by mobilization of AChR from a fixed array, allowing AChR IMPs to diffuse away from the clusters, to form microaggregates, and to become internalized. Cluster reformation appears to be the reverse of this process. Our results are thus consistent with a two-step model for AChR clustering, in which the concentration of IMPs into a small membrane region precedes their rearrangement into evenly spaced sites.  相似文献   

12.
Freeze-fracture electron microscopy of the plasma membrane of the fertilized, uncleaved Xenopus egg shows that intramembranous particles (IMPs) range in size from ca. 50 to 200 Å and that more IMPs are attached to the E-face than to the P-face. The overall IMP densities of the animal and the vegetal hemisphere do not differ significantly. IMP-free regions (?, ca. 0.1 μm) on the tips of surface protrusions were irregularly distributed in the animal and the vegetal half (E-face) occupying ca. 8.5 and 2%, respectively of the free area. The relative densities for 16 different IMP sizes have been compared, on the basis of seven animal and seven vegetal halves, counting (E-faces only) ca. 10,000 IMPs in each hemisphere. For IMP sizes of ≤81 Å, a significant difference (P < 0.0005) was found, more small IMPs being present in the animal half. Some evidence for IMP-associated thin elements was found. These findings are discussed in relation to plasma membrane anisotropy and the morphogenetic role of the egg cortex.  相似文献   

13.
The density and diameter distributions of intramembranous particles (IMPs) within unmyelinated axolemma from rat cervical sympathetic trunk were examined with freeze-fracture electron microscopy. The axolemma displays a highly asymmetrical partitioning of IMPs with ca. 1200 IMPs microns-2 on P-faces and ca. 100 IMPs microns-2 on E-faces. Particle sizes (diameters) are unimodally distributed on both fracture faces, with a range from 2.4 nm to 15.6 nm. Approximately 16% of the particles on P-faces and 28% of particles on E-faces are of a large (greater than 9.6 nm) diameter. On both fracture faces, the IMPs appear to be randomly distributed; no aggregations of particles were observed. The results indicate that there are ca. 230 large IMPs microns-2 of unmyelinated axolemma from rat cervical sympathetic trunk. The density of these IMPs is similar to the density of saxitoxin binding sites on unmyelinated axolemma from rat cervical sympathetic trunk (Pellegrino et al. 1984 (Brain Res. 305, 357-360)), which suggests that many of the large diameter particles may be the morphological correlate of voltage-sensitive Na+ channels.  相似文献   

14.
The plasma membrane is considered to play a major role in the development and maintenance of the multidrug resistance (MDR) phenotype, a role which may in part be mediated by an inducible 170 kD transmembrane protein (P-170). The present freeze-fracture study of plasma membranes of daunorubicin-resistant Ehrlich ascites and P388 leukemia cells demonstrated a significant increase in the density of intramembrane particles (IMP) in the P-face, but not the E-face, of resistant sublines compared with wild type cells. Furthermore, a three-dimensional histogram plot of the diameters of P-face IMPs in Ehrlich ascites tumor cells showed the emergence of a subpopulation of 9 × 11 nm IMPs not found in wild type cells. The size of these IMPs would be consistent with a MW of approximately 340 kD, thus indicating that P-170, shown to be present in both resistant cell lines by Western blot analysis and immunohistochemical staining, exists as a dimer in the plasma membrane. Incubation with the calcium channel blocker verapamil, in concentrations known to inhibit daunorubicin efflux in resistant cells, showed evidence of membrane disturbance in the form of IMP clustering in both wild type and resistant Ehrlich ascites tumor cells. However, incubation with daunorubicin itself did not alter the freeze-fracture morphology of the plasma membranes.  相似文献   

15.
Serum levels of LH, total estrogen and progesterone were measured daily by radioimmunoassay during proestrus, estrus and early diestrus in five beagle bitches. Occurrence of the LH peak relative to the onset of estrus was quite variable ranging from 3 days before to 7 days after the onset of estrus. Serum LH levels were elevated for 3 days with a peak value of 25 ± 2 ng/ml reached 2.4 days after the start of estrus. LH levels were ≤ 2 ng/ml when measured at other times during the estrous cycle. Estrogen titers ranged from 84 ± 39 pg/ml at 9 days before the LH peak to 175 ± 15 pg/ml coincident with the LH peak. A broad estrogen peak was evident beginning 5 days before and continuing for 5 days after the LH peak. An estrogen surge was seen in 4 of 5 dogs immediately preceding or coincident with the LH peak suggesting that LH release in the bitch is triggered by a sharp elevation in estrogen levels. Serum progesterone levels rose from ≤ 5 ng/ml before the LH peak to 46 ± 6 ng/ml 6 days afterwards.  相似文献   

16.
Using freeze-fracture electron microscopy, compositional changes were analysed in the surface membrane of Xenopus oocytes during maturation after in vitro progesterone treatment, as well as in eggs before and after fertilization. Investigated stages were as follows: (1) defolliculated full-grown oocytes; (2) defolliculated oocytes after 5 min exposure to 5 micrograms/ml progesterone; (3) ditto at germinal vesicle breakdown (GVBD) after 5 h progesterone treatment; (4) unfertilized eggs at oviposition and (5) zygotes 30 min post-fertilization. Comparing the patterns of intramembranous particle (IMP) density and IMP size during these stages the following changes were found: a transient decrease in IMP density was found after 5 min progesterone treatment; a 48% increase during maturation; a further 17% increase after fertilization. In defolliculated oocytes tight-junction-like structures were found, but no gap junctions. These results are discussed with reference to progesterone action, membrane remodelling, protein synthesis and membrane lipid organization.  相似文献   

17.
The in vitro metabolism of progesterone was studied in uteri of untreated and estrogen stimulated immature rats. In intact uteri the rate of metabolism varied with the hormonal status of the animal in a concentration dependent manner. At a low (3 × 10?9M) progesterone concentration the rate of ring A reduction was decreased in estrogen stimulated uteri. At a high progesterone concentration (3 × 10?6M) the rate of ring A reduction was increased after estrogen treatment. The rate of reduction of the C20 ketone was increased after estrogen treatment at all concentrations of incubated progesterone. In dilute homogenates of uterus, estrogen stimulation always increased the rate of progesterone metabolism.Estrogen stimulation results in increased concentration of progesterone receptor in the uterus. It is proposed that increased activity of ring A reductases also occurs. The relative influence of these two factors on the metabolism of progesterone is dependent on the progesterone concentration in the incubation medium.  相似文献   

18.
Summary The free surfaces and cell contacts in the epithelia of the vomeronasal organ of the rat were investigated by freeze-etching. The microvilli of receptor cells show a lower density of intramembranous particles (IMP) than the microvilli in the receptor-free epithelium. The ratio between the IMP on P and E-face is approximately 111 in the receptor terminals, and 3.51 in the cilia and microvilli of the receptor-free epithelium. Although atypical in length and only poorly equipped with rootlet fibers, the cilia of the receptor-free epithelium are furnished with typical ciliary necklace structures of up to 10 rows of membrane particles. Differences in the density of IMP on the P-faces of different cilia are probably due to continual ciliogenesis and also due to the different age of cilia in the receptor-free epithelium. Zonulae occludentes show different configurations in the neuroepithelium and in the receptor-free epithelium. In the former, they show a tendency to cross-link and form facet-like patterns, reflecting a constant morphology and relative stability for this apical region. In the receptor-free epithelium the junctional rows of zonulae occludentes display only loosely interconnected networks and a tendency to orient parallel to each other and to the free surface. In addition to zonulae occludentes, typical square aggregations of IMP are observed in the receptor-free epithelium. They are not exclusively restricted to the zone of intensive cell contacts by means of fine interdigitating cell processes, and their function has yet to be identified experimentally.This paper is dedicated to Dr. David G. MoultonPortions of this work are from a thesis in preparation by F.M. Supported by the Deutsche Forschungsgemeinschaft (SFB 114)  相似文献   

19.
The detailed knowledge of the molecular process of mechanotransduction is still an unsolved question. The investigation of the intramembranous structure of the cutaneous mechanoreceptors may play an important role in elucidating this problem. In this relation, Herbst sensory corpuscles in ducks were studied for the first time using the freeze-etching and thin sectioning techniques. Herbst corpuscles have the basic structural components valid for most of the encapsulated mechanoreceptors in mammals: a capsule made of perineural cells, a lamellar complex of modified Schwann cells, surrounding the non-myelinated part of the receptor nerve fiber and its ending. Freeze-etching replicas reveal that the plasmalemmae of the capsule cells, modified Schwann cells and axolemmae of parts of the nerve fiber differ in both density and pattern of distribution of intramembranous particles (IMPs) as well as IMP size. On all the plasmalemmae the IMP density is higher on the P-face (2000-3300 microm(-2)) than the respective E-face (800-1500 microm(-2)). The axolemma of the ending of the receptor nerve fiber expresses higher density of IMPs than its shaft. The mean IMP size for all the plasmalemmae varies between 5.5 and 7.5 nm. Many tight junctions occur between the capsule cells. These results indicate that the non-myelinated axolemma as well as the plasmalemmae of other components of Herbst corpuscles are specialized in terms of content and distribution of IMPs. The IMPs may represent various kinds of mechanosensitive channel proteins or related membrane-bound proteins participating in the process of mechanotransduction.  相似文献   

20.
Dieter Volkmann 《Planta》1984,162(5):392-403
Growing root hairs of cress (Lepidium sativum L.) were investigated using freeze-fracture and electron-microscopic techniques. Three zones of differentiation could be detected: the tip zone, the zone of vacuolation and the foot zone. Corresponding to these zones, the plasmatic fracture face of the plasma membrane showed areas of pronounced differentiation with respect to the distribution and frequency of intramembranous particles (IMPs). The tip zone was characterized by an irregular fracture plane caused by a large number of blisters which were more or less free of IMPs. These blisters coincided in size and shape with Golgi vesicles accumulated in the ground cytoplasm near the very tip. Outside these blisters, IMPs were randomly distributed. The surrounding cell wall was very thin and mainly composed of amorphous material. The plasma membrane of the vacuolation zone often revealed areas of hexagonally ordered particles (HOPS). Such patterns of particles were observed in chemically fixed and unfixed root hairs with a maximum surface density of 1200 HOPS per area. Mostly, however, 15–50 HOPS per area were found. The number of such areas increased with increasing distance from the tip up to five areas per m2. Additionally, imprints of large cellulose microfibrils could be detected in unfixed material; they were mainly parallel to the root-hair axis and sometimes ended in areas of HOPS. However, HOPS were observed only in approximately 60% of the root hairs. Otherwise, large areas free of IMPs were interspersed between areas of randomly distributed IMPs. The particle frequency was relatively low and varied greatly in the tip as well as in the vacuolation zone, that is, from 1200 to 2000 IMPs m-2. Finally, the plasma membrane of the foot zone showed a very constant number of approx. 2000 IMPs m-2. These particles were mainly distinct and randomly distributed. In this zone, HOPS were never observed in spite of the fact that the cell wall was composed of numerous parallel-running cellulose microfibrils. Since membrane material is mainly incorporated in the tip zone where IMPs are statistically distributed, the results indicate that the plasma membrane of the outgrowing part of the root-hair cells is characterized by a high lateral mobility of its components. Furthermore, they indicate that specifically arranged particles are involved in the synthesis of cellulose microfibrils. These areas of HOPS seem to be locally restricted and — or limited with respect to their lifetime.Abbreviations cmf(s) cellulose microfibril(s) - EF extraplasmatic fracture face - HOPS hexagonally ordered particles - IMP intramembranous particle - PF plasmatic fracture face - pm plasma membrane Dedicated to Professor Dr. Kurt Mühlethaler, Zürich, on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号