首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visual pigments and oil droplets in the retina of the diurnal gecko Gonatodes albogularis were examined microspectrophotometrically, and the spectral sensitivity under various adapting conditions was recorded using electrophysiological responses. Three classes of visual pigments were identified, with max at about 542, 475, and 362 nm. Spectral sensitivity functions revealed a broad range of sensitivity, with a peak at approximately 530–540 nm. The cornea and oil droplets were found to be transparent across a range from 350–700 nm, but the lens absorbed short wavelength light below 450 nm. Despite the filtering effect of the lens, a secondary peak in spectral sensitivity to ultraviolet wavelengths was found. These results suggest that G. albogularis does possess the visual mechanisms for discrimination of the color pattern of conspecifics based on either hue or brightness. These findings are discussed in terms of the variation in coloration and social behavior of Gonatodes.Abbreviations ERG electroretinogram - MSP microspectrophotometry - UV ultraviolet - max wavelength of maximum absorbance  相似文献   

2.
Onion guard cells, in contrast to those of Vicia and Pisum, do not require an alkaline treatment in order to fluoresce. Fluorescing compounds of Allium cepa L. were characterized using in-vivo microspectrophotometry; furthermore, invitro chemical analysis for epidermal tissue, intact guard and epidermal cells, and isolated guard-cell protoplasts was performed. The emission intensity (max 520 nm) decreased when intact onion guard cells were excited with 436 nm light, but increased (max 470 nm) when excited at 365 nm. This photodecomposition at 436 nm is typical of flavins or flavoproteins whereas an increase in fluorescence intensity with excitation at 365 nm may be explained by the presence of other substances. The presence of flavins could not be unambiguously confirmed from these results. Indeed, the absorption spectra of the vacuolar area of guard cells did not show the peak at 445 nm which is characteristic for flavins. Furthermore, there was no decrease of absorption at the excitation wavelengths of 440 and 330 nm. Since spectral data indicate the presence at high amounts of flavonoids in guard and epidermal cells, this may reduce the sensitivity for the detection of flavins in guard cells. Using thin-layer chromatography and high-performance liquid chromatography together with hydrolytic procedures, flavonol glycosides with kaempferol and quercetin as aglycones substituted with sulphate and glucuronate were identified. Further studies on guard-cell metabolism should consider the presence of flavonoids in stomata of onion and other plants.Abbreviations GCP guard-cell protoplast - HPLC high-performance liquid chromatography - TLC thin-layer chromatography  相似文献   

3.
The structural basis for the spectral red shift in the near-IR absorption band of the B875 light-harvesting complex was examined by treatment of membranes from Rhodobacter sphaeroides M21 with acid. This mutant strain lacks the overlapping spectral bands of the B800–850 light-harvesting antenna and gives rise to membrane fragments with both surfaces accessible to protons. At pH 2.2, about half the absorption at 876 nm was converted within 10 min to a free pigment band; the remaining absorption appeared at 880 nm and shifted to 845 nm over the next three hours. These spectral shifts could not be reversed by alkali. Approximately one-third of the characteristic near-IR CD signal of B875 was also lost initially and replaced by a broad trough centered near 854 nm. Thereafter, the CD spectrum was dominated by the strong conservative signal of the 845 nm absorbing component which was attributed to an oligomeric bacteriopheophytin a species, probably a dimer. A kinetic analysis of the acid-induced absorption changes suggested a multi-step model with rate constants of 0.37 min-1 for the initial rapid change and 0.05 and 0.11 min-1 for the respective subsequent steps. The non-conservative nature of the near-IR CD spectrum of the intact complex, together with the spectral changes observed after the initial loss of near-IR absorption and CD, suggest that pigment-pigment interactions are not solely responsible for the red shift in this complex.Abbreviations BChl bacteriochlorophyll a - BPheo bacteriopheophytin a  相似文献   

4.
Electron transport of normal and photobleachedAnabaena cylindrica was studied using spectral and kinetic analyses of absorbance transients induced by single turnover flashes. Between 500 and 600 nm two positive bands (540 and 566 nm) and two negative bands (515 and 554 nm) were found. Absorbance changes at 515 and 540 nm were partly characterized. None of these absorbance changes represent an electrochromic shift. Absorbance changes at 554 and 566 nm correspond to the oxidation of cytochromef and the reduction of cytochromeb 563, respectively. We found a very slight 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) sensitivity of cytochromef in normal cells, while DCMU was completely ineffective for cytochromef reduction in photobleached cells. The absorbance change of cytochromeb 563 increased, while the absorbance change of cytochromef was smaller than in normal cells. The increased O2 evolution in photobleached cells and the negligible electron transport via cytochromef suggest the participation of other electron acceptor(s) in the electron-transport chain of photobleachedAnabaena cylindrica.  相似文献   

5.
Summary The visual pigments in the rods of 15 species of deep-sea fish were examined by microspectrophotometry. In 13 species a single visual pigment was found. The max of these pigments, which ranged from 475 nm to 488 nm, suggest they give the fish maximum sensitivity to the ambient light in the deep, blue ocean waters where they live. In two species two visual pigments were found in separate rods.Bathylagus bericoides had rhodopsins of max 466 nm and 500 nm andMalacocephalus laevis had two rhodopsins of max 478 nm and 485 nm. It is noted that the species with two visual pigments tend to be dark in colour and live in deeper, darker, water.  相似文献   

6.
The visual pigment and visual cycle of the lobster,Homarus   总被引:1,自引:0,他引:1  
Summary The visual pigment of the American lobster,Homarus americanus, has been studied in individual isolated rhabdoms by microspectrophotometry. Lobster rhodopsin has max at 515 nm and is converted by light to a stable metarhodopsin with max at 490 nm. These figures are in good agreement with corresponding values obtained by Wald and Hubbard (1957) in digitonin extracts. Photoregeneration of rhodopsin to metarhodopsin is also observed. The absorbance spectrum of lobster metarhodopsin is invariant with pH in the range 5.4–9, indicating that even after isomerization of the chromophore fromcis totrans, the binding site of the chromophore remains sequestered from the solvent environment. Total axial density of the lobster rhabdom to unpolarized light is about 0.7.As described for several other Crustacea, aldehyde fixation renders the metarhodopsin susceptible to photobleaching, a process that is faster at alkaline than at neutral or acid pH. Small amounts of a photoproduct with max at 370 nm are occasionally seen. A slower dark bleaching of lobster rhabdoms (1/2–2 h) also occurs, frequently through intermediates with absorption similar to metarhodopsin.The molar extinction coefficient of metarhodopsin is about 1.2 times greater than that of rhodopsin, each measured at their respective max. Isomerization of the chromophore fromcis totrans is accompanied by a change in the orientation of the absorption vector of about 3°. The absorption vector of metarhodopsin is either tilted more steeply into the membrane or is less tightly oriented with respect to the microvillar axes.When living lobsters are kept at room temperature, light adaptation does not result in an accumulation of metarhodopsin. At 4 °C, however, the same adapting lights cause a reduction of rhodopsin and an increase in metarhodopsin. There is thus a temperature-sensitive regeneration mechanism that supplements photoregeneration. Following 1 ms, 0.1 joule xenon flashes that convert about 70% of the rhodopsin to metarhodopsin in vivo, dark regeneration occurs in the living eye with half-times of about 25 and 55 min at 22 °C and 15 °C respectively.This work was supported by USPHS research grant EY 00222 to Yale University. S.N.B. was aided by NIH Postdoctoral Fellowship EY 52378.  相似文献   

7.
The visual pigment of a stomatopod crustacean,Squilla empusa   总被引:2,自引:0,他引:2  
Summary Stomatopod crustaceans are visually active animals which have large, mobile compound eyes of unique design. Aspects of their ecology and behavior suggest they may be able to discriminate hues. Isolated rhabdoms of the squillid stomatopod,Squilla empusa, were investigated using microspectrophotometry and fluorometry. A single rhodopsin, of max507 nm, exists in the main rhabdom. Its stable metarhodopsin, with max503 nm, possesses typical arthropod fluorescence characteristics. No evidence was found for a visual pigment with peak absorption in the ultraviolet. Vision in this animal might therefore be monochromatic.Abbreviation ASW artificial sea water  相似文献   

8.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

9.
Summary The retina in the compound eye of the African army-worm moth,Spodoptera exempta, contains four different visual pigments (Fig. 4). Their existence was demonstrated by microspectrophotometry and by electrophysiological experiments, using selective colour adaptations. The pigments were localized in different receptor cells of the ommatidia (Fig. 6) by a special electron microscopic technique (Fig. 5). One of the pigments, a rhodopsin with the absorption maximum at about 560 nm, causes this eye's distinct red sensitivity up to more than 700 nm, found electrophysiologically.Staff member of ICIPE during sabbatical leave in 1976/77.The results of this investigation were presented orally at the Annual Conference of ICIPE, Nairobi, June 1978. This work was supported financially by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach), and by Heinrich-Hertz-Stiftung of Bundesland Nordrhein-Westfalen, Federal Republic of Germany.  相似文献   

10.
Summary The NMR shift reagent, Europium(III)-tris-(1,1,1,2,2,3,3)-heptafluoro-7,7-dimethyl-4-6-octanedione [Eu(fod)3], complexes efficiently with-amino acid esters in chloroform. These complexes exhibit characteristic circular dichroism (CD) spectral patterns in the 350-250 nm region. A fast and simple procedure (also in microscale) has been worked out which utilizes the signs of these CD bands for the determination of the absolute configuration at the-carbon atomin situ. In the L-series, a positive CD band is observed at around 310 nm and a negative one in the 290-280 nm region. The CD spectra of the Eu complexes of the D-isomers are mirror images of those of the L-configurations. An empirical rule is proposed.Presented in part at the 2nd International Congress on Amino Acids and Analogues, Vienna, Austria, August 5–9, 1991.  相似文献   

11.
The spectral properties of peptides generated from etiolated-Avana, 124-kDa (kilodalton) phytochrome by endogenous protease(s) have been studied to assess the role of the amino-terminal and the carboxyl-terminal domains in maintaining the proper interaction between protein and chromophore. The amino-terminal, 74-kDa chromopeptide, a degradation product of the far-red absorbing form of the pigment (Pfr), is shown to be spectrally similar to the 124-kDa, undegraded molecule. The minimum and maximum of the difference spectrum (Pr-Pfr) are 730 and 665 nm, respectively, and the spectral-change ratio is unity. Also, like undegraded, 124-kDa phytochrome, the 74-kDa peptide exhibits minimal dark reversion. These data indicate that the 55-kDa, carboxyl-terminal half of the polypeptide does not interact with the chromophore and may not have a role in the structureal integrity of the amino-terminal domain. The 64-kDa chromopeptide can be generated directly from the 74-kDa species by cleavage of 10 kDa from the amino terminus upon incubation of this species as Pr. Accompanying this conversion are changes in the spectral properties, namely, a shift in the difference spectrum minimum to 722–724 nm and a tenfold increase in the capacity for dark reversion. These data indicate that the 6–10 kDa, amino-terminal segment continues to function in its role of maintaining proper chromophore-protein interactions in the 74-kDa peptide as it does in the undegraded molecule. Conversely, removal of this segment upon proteolysis to the 63-kDa species leads to aberrant spectral properties analogous to those observed when this domain is lost from the full-length, 124-kDa molecule, resulting in the 118/114-kDa degradation products. The data also show that photoconversion of the 74-kDa chromopeptide from Pfr to Pr exposes proteolytically susceptible sites in the same way as in the 124-kDa molecule. Thus, the separated, 74-kDa amino-terminal domain undergoes a photoinducible conformational change comparable to that in the intact molecule.Abbreviations and symbols Da dalton - Pfr far-red-absorbing from of phytochrome - PMSF phenylmethylsulfonyl fluoride - Pr red-absorbing form of phytochrome - R red light - FR lar-red light - A r/A fr spectral change ratio - max FR peak maximum (nm) of Pfr absorbance  相似文献   

12.
A study of the absorption and fluorescence characteristics of the D1/D2/cytb-559 reaction centre complex of Photosystem II has been carried out by gaussian decomposition of absorption spectra both at room temperature and 72 K and of the room temperature fluorescence spectrum. A five component fit was found in which the absorption and fluorescence sub-bands could be connected by the Stepanov relation. The photobleaching and light-activated degradation in the dark of long wavelength pigments permitted a further characterisation of the absorption bands. The absorption (fluorescence) maxima of the five bands at room temperature are 660 nm (670 nm), 669 nm (675 nm), 675 nm (681 nm), 680 nm (683 nm), 681 nm (689 nm). A novel feature of this analysis is the presence of two approximately isoenergetic absorption bands near 680 nm at room temperature. The narrower one (FWHM=12.5 nm) is attributed to pheophytin while the broader band (FWHM=23 nm) is thought to be P680. The P680 band width is discussed in terms of homogeneous and site inhomogeous band broadening. The P680 fluorescence has a large Stokes shift (9 nm) and most fluorescence in the 690–700 nm range is associated with this chromophore.The three accessory pigment bands are broad (FWHM=17–24 nm) and the 660 nm gaussian is largely temperature insensitive thus indicating significant site inhomogeneous broadening.The very slight narrowing of the D1/D2/cytb-559 Qy absorption at crytogenic temperatures is discussed in terms of the coarse spectral inhomogeneity associated with the spectral forms and the apparently large site inhomogeneous broadening of short wavelength accessory pigments.  相似文献   

13.
We report on the lens pigmentation and visual pigments of 52 species of demersal deep-sea fishes caught at depths ranging from 480 m to 4110 m in the Porcupine Seabight and Goban Spur area of the North-eastern Atlantic. Only one species, caught between 480 and 840 m, had a lens with large amounts of pigment, consistent with the hypothesis that heavily pigmented lenses in deep-sea fish serve to enhance the contrast of bioluminescent signals by removing much of the background radiance, which is only visible to fish living shallower than 1000 m. Low concentrations of lens pigmentation were also observed in a further two species (Rouleina attrita and Micromesisteus poutassou). The retinae of all species except five, contained only a single visual pigment, as determined by microspectrophotometry of individual rods, and/or spectrophotometry of retinal wholemounts and retinal extracts. Those fishes caught between 500 m and 1100 m had wavelengths of peak sensitivity (max) ranging from 476 nm to 494 nm, while most fish living below 1100 m tended to be more conservative with (max) values ranging from 475 nm to 485 nm. The only exceptions to this were three deep-living species caught between 1600 m and 2000 m whose retinae contain abnormally short-wave sensitive visual pigments (Cataetyx laticepsmax 468 nm; Alepocephalus bairdiimax 467 nm; Narcetes stomias max 472 nm), suggesting adaptation for the detection of short-wave bioluminescence.  相似文献   

14.
Thefur gene product, Fur, ofEscherichia coli is a repressor when it binds Fe(II). Since heme and iron metabolism are closely linked and Fur is rich in histidine, a ligand for heme, the binding of heme to Fur was investigated. The oxidized Fur-heme complex is stable and low spin with a Soret maximum at 404 nm and no 620-nm band. CO coordinates with the reduced heme-Fur complex, causing a shift from 412 nm to 410 nm, and stabilizes it, increasing the half-life from 5 to 15 min. Circular dichroism (CD) spectra in the Soret region show heme bound in an asymmetric environment in Fur, both in the oxidized and reduced-CO forms. Quenching of tyrosine fluorescence by heme revealed rapid, tight binding (K d<1M) with an unusual stoichiometry of 1 heme:1 Fur dimer. Fur binds Mn(II), a model ligand for the endogenous Fe(II), much more weakly (K d>80M). Far-ultraviolet CD spectroscopy showed that the-helix content of apo-Fur decreases slightly with heme binding, but increases with Mn(II) binding. Competition experiments indicated that heme interacts with Fur dimers at the same site as Mn(II) and can displace the metal. In contrast to Mn(II), Zn(II) did not quench the tyrosine fluoroescence of Fur, affected the CD spectrum less than Mn(II), but did bind in a manner which prevented heme from binding. In sum, Fur not only binds heme and Zn(II) with sufficient affinity to be biologically relevant, but the interactions that occur between these ligands and their effects on Mn(II) binding need to be taken into account when addressing the biological function of Fur.  相似文献   

15.
A subunit complex was formed from the core light-harvesting complex (LH1) of bacteriochlorophyll(BChl)-b-containing Rhodopseudomonas viridis. The addition of octyl glucoside to a carotenoid-depleted Rps. viridis membrane preparation resulted in a subunit complex absorbing at 895 nm, which could be quantitatively dissociated to free BChl b and then reassociated to the subunit. When carotenoid was added back, the subunit could be reassociated to LH1 with a 25% yield. Additionally, the Rps. viridis - and -polypeptides were isolated, purified, and then reconstituted with BChl b. They formed a subunit absorbing near 895 nm, similar to the subunit formed by titration of the carotenoid depleted membrane, but did not form an LH1-type complex at 1015 nm. The same results were obtained with the -polypeptide alone and BChl b. Isolated polypeptides were also tested for their interaction with BChl a. They formed subunit and LH1-type complexes similar to those formed using polypeptides isolated from BChl-a-containing bacteria but displayed 6–10 nm smaller red shifts in their long-wavelength absorption maxima. Thus, the larger red shift of BChl-b-containing Rps. viridis is not attributable solely to the protein structure. The -polypeptide of Rps. viridis differed from the other -polypeptides tested in that it could form an LH1-type complex with BChl a in the absence of the - and -polypeptides. It apparently contains the necessary information required to assemble into an LH1-type complex. When the -polypeptide was tested in reconstitution with BChl a and BChl b with the - and -polypeptides, it had no effect; its role remains undetermined.Abbreviations B820 the subunit form of the core light-harvesting complex in BChl-a-containing bacteria which has an absorption maximum at or near 820 nm - B875 the core light-harvesting complex of Rhodobacter sphaeroides which has an absorption maximum at 875 nm - B881 the core light-harvesting complex of wild-type Rhodospirillum rubrum which has an absorption maximum at 881 nm - B895 the subunit form of the core light-harvesting complex in Rps. viridis which has an absorption maximum near 888–895 nm - B1015 the core light-harvesting complex of Rps. viridis which has an absorption maximum at 1015 nm - CD circular dichroism - LH1 the core light-harvesting complex - OG n-octyl -d-glucopyranoside  相似文献   

16.
The electric organ discharge (EOD) of the South American knifefish Eigenmannia sp. is a permanently present wave signal of usually constant amplitude and frequency (similar to a sine wave). A fish perceives discharges of other fish as a modulation of its own. At frequency identity (F = 0 Hz) the phase difference between a fish's own electric discharge and that of another fish affects the superimposed waveform. It was unclear whether or not the electrosensory stimulus-intensity threshold as behaviourally determined depends on the phase difference between a fish's own EOD and a sine-wave stimulus (at F = 0 Hz). Also the strength of the jamming avoidance response (JAR), a discharge frequency shift away from a stimulus that is sufficiently close to the EOD frequency, as a function of phase difference was studied. Sine-wave stimuli were both frequency-clamped and phase-locked to a fish's discharge frequency (F = 0 Hz). In food-rewarded fish, the electrosensory stimulus-intensity threshold depended significantly on the phase difference between a fish's discharge and the stimulus. Stimulus-intensity thresholds were low (down to 3 V/cm, peak-to-peak) when the superimposed complex wave changed such that the shift in zero-crossings times relative to the original EOD was large but amplitude change minimal; stimulus-intensity thresholds were high (up to 16.9 V/cm, peak-to-peak) when the shift in zero-crossings times was small but amplitude change maximal. Similar results were obtained for the non-conditioned JAR: at constant supra-threshold stimulus intensities and F = 0 Hz, the phase difference significantly affected the strength of the JAR, although variability between individuals was higher than that observed in the conditioned experiments.Abbreviations ACP active phase coupling - EOD electric organ discharge - JAR jamming avoidance response - F frequency (fish) — frequency (stimulus) [Hz] - p-p peak-to-peak  相似文献   

17.
Summary Visual pigments in the rods of 38 species of deep-sea fish were examined by microspectrophotometry. 33 species were found to have a single rhodopsin with a wavelength of maximum absorbance ( max) in the range 470–495 nm. Such visual pigments have absorbance maxima close to the wavelengths of maximum spectral transmission of oceanic water. 5 species, however, did not conform to this pattern and visual pigments were found with max values ranging from 451 nm to 539 nm. In 4 of these species two visual pigments were found located in two types of rod. Some 2-pigment species which have unusual red sensitivity, also have red-emitting photophores. These species have both rhodopsin and porphyropsin pigments in their retinae, which was confirmed by HPLC, and the two pigments are apparently located in separate rods in the same retinal area. In deep-sea fishes the occurrence of unusual visual pigments seems to be correlated with aspects of the species' depth ranges. In addition to ecological influences we present evidence, in the form of max spectral clustering, that indicates the degree of molecular constraint imposed on the evolution of visual pigments in the deep-sea.  相似文献   

18.
The fluorescence of the voltage sensitive dye, diS-C3-(5), has been analyzed by means of synchronous excitation spectroscopy. Using this rather rare fluorescence technique we have been able to distinguish between the slightly shifted spectra of diS-C3-(5) fluorescence from cells and from the supernatant. It has been found that diS-C3-(5) fluorescence in the supernatant can be selectively monitored at exc = 630 nm and em= 650 nm, while the cell associated fluorescence can be observed at exc= 690 nm and em = 710 nm. A modified theory for the diSC3-(5) fluorescence response to the membrane potential is presented, according to which a linear relationship exists between the logarithmic increment of the dye fluorescence intensity in the supernatant, In I/I°, and the underlying change in the plasma membrane potential, p=pp. The theory has been tested on human myeloid leukemia cells (line ML-1) in which membrane potential changes were induced by valinomycin clamping in various K+ gradients. It has been demonstrated that the membrane potential change, p,can be measured on an absolute scale. Offprint requests to: J. Plasek  相似文献   

19.
The goatfish Upeneus tragula undergoes an abrupt metamorphosis at settlement when the pelagic larvae begin a reef-associated benthic mode of life. A microspectrophotometric investigation of the retinal visual pigments was carried out on fish prior to, during, and following settlement. It was found that the visual pigment in the long wavelength-absorbing member of the double cones in the dorsal retina changed rapidly from a rhodopsin with a wavelength of maximum absorption (max) of 580 nm to that of 530 nm. The second member of the double cones always had a rhodopsin with the max absorbing at shorter wavelengths. Prior to settlement the average for this class of cones was 487 nm whereas during and immediately following the settlement period the max recorded from individual outer segments was found to vary between 480 nm and 520 nm, with two possible classes of cone absorbance emerging within this range. These two classes of absorbance had average max values of 487 and 515 nm. The average max of the paired cone classes in one larger wild-settled fish were found to be at 506 nm and 530 nm. No change was detected in the max of the single cones or the rods which were always found to have a max of about 400 nm and 498 nm respectively. The loss of the redabsorbing pigment occurred over the same time scale as the metamorphosis of morphological features associated with the settlement process. It is thought that the loss of this visual pigment is associated with the change in light environment of the fishes as they leave the surface waters to begin a benthic mode of life in deeper water.Abbreviations AIMS Australian Institute of Marine Science - ANOVA Analysis of variance - IR infra-red - max wavelength of maximum absorption - MSP microspectrophotometer - NA numerical aperture - SL standard length  相似文献   

20.
Summary In the compound eye of the moth Antheraea polyphemus, three types of visual pigments were found in extracts from the retina and by microspectrophotometry in situ. The absorption maxima of the receptor pigment P and the metarhodopsin M are at (1) P 520–530 nm, M 480–490 nm; (2) P 460–480 nm, M 530–540 nm; (3) P 330–340 nm, M 460–470 nm. Their localization was investigated by electron microscopy on eyes illuminated with different monochromatic lights. Within the tiered rhabdom, constituted of the rhabdomeres of nine visual cells, the basal cell contains a blue-and the six medial cells have a greenabsorbing pigment. The two distal cells of most ommatidia also have the blue pigment; only in the dorsal region of the eye, these cells contain a UV-absorbing pigment, which constitutes a portion of only 5% of the visual pigment content within the entire retina. The functional significance of this distribution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号