首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meniscal attachments are ligamentous tissues anchoring the menisci to the underlying subchondral bone. Currently little is known about the behavior of meniscal attachments, with only a few studies quantitatively documenting their properties. The objective of this study was to quantify and compare the tensile mechanical properties of human meniscal attachments in the transverse direction, curve fit experimental Cauchy stress-stretch data to evaluate the hyperelastic behavior, and couple these results with previously obtained longitudinal data to generate a more complete constitutive model. Meniscal attachment specimens were tested using a uniaxial tension test with the collagen fibers oriented perpendicular to the loading axis. Tests were run until failure and load-optical displacement data was recorded for each test. The medial posterior attachment was shown to have a significantly greater elastic modulus (6.42±0.78 MPa) and ultimate stress (1.73±0.32 MPa) when compared to the other three attachments. The Mooney-Rivlin material model was selected as the best fit for the transverse data and used in conjunction with the longitudinal data. A novel computational approach to determining the transition point between the toe and linear regions is presented for the hyperelastic stress-stretch curves. Results from piece-wise non-linear longitudinal curve fitting correlate well with previous linear elastic and SEM findings. These data can be used to advance the design of meniscal replacements and improve knee joint finite element models.  相似文献   

2.
3.
4.
Numerous studies have examined the effects of distraction osteogenesis (DO) on bone, but relatively fewer have explored muscle adaptation, and even less have addressed the concomitant alterations that occur in the tendon. The purpose herein was to characterize the biomechanical properties of normal and elongated rabbit (N=20) tendons with and without prophylactic botulinum toxin type A (BTX-A) treatment. Elastic and viscoelastic properties of Achilles and Tibialis anterior (TA) tendons were evaluated through pull to failure and stress relaxation tests.All TA tendons displayed nonlinear viscoelastic responses that were strain dependent. A power law formulation was used to model tendon viscoelastic responses and tendon elastic responses were fit with a microstructural model. Distraction-elongated tendons displayed increases in compliance and stress relaxation rates over undistracted tendons; BTX-A administration offset this result. The elastic moduli of distraction-lengthened TA tendons were diminished (p=0.010) when distraction was combined with gastrocnemius (GA) BTX-A administration, elastic moduli were further decreased (p=0.004) and distraction following TA BTX-A administration resulted in TA tendons with moduli not different from contralateral control (p>0.05). Compared to contralateral control, distraction and GA BTX-A administration displayed shortened toe regions, (p=0.031 and 0.038, respectively), while tendons receiving BTX-A in the TA had no differences in the toe region (p>0.05). Ultimate tensile stress was unaltered by DO, but stress at the transition from the toe to the linear region of the stress–stretch curve was diminished in all distraction-elongated TA tendons (p<0.05). The data suggest that prophylactic BTX-A treatment to the TA protects some tendon biomechanical properties.  相似文献   

5.
In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.  相似文献   

6.
The lack of practicable nonlinear elastic contact models frequently compels the inappropriate use of Hertzian models in analyzing indentation data and likely contributes to inconsistencies associated with the results of biological atomic force microscopy measurements. We derived and validated with the aid of the finite element method force-indentation relations based on a number of hyperelastic strain energy functions. The models were applied to existing data from indentation, using microspheres as indenters, of synthetic rubber-like gels, native mouse cartilage tissue, and engineered cartilage. For the biological tissues, the Fung and single-term Ogden models achieved the best fits of the data while all tested hyperelastic models produced good fits for the synthetic gels. The Hertz model proved to be acceptable for the synthetic gels at small deformations (strain < 0.05 for the samples tested), but not for the biological tissues. Although this finding supports the generally accepted view that many soft materials can be assumed to be linear elastic at small deformations, the nonlinear models facilitate analysis of intrinsically nonlinear tissues and large-strain indentation behavior.  相似文献   

7.
In this study we investigated how microdamage accumulated with increasing compressive strain in bovine trabecular bone. We found that little damage is created in the linear elastic region, up to -0.4 percent strain. At an average strain of -0.76 percent +/-0.25 percent, the stress-strain curve became nonlinear, and peaked at -1.91 percent +/-0.55 percent strain. Microdamage increases rapidly during the peak of the stress-strain curve, and a localized band of damage formed. At strains beyond the ultimate strain, the damaged band widened and the density of damage within the band increased. Microdamage occurred as groupings of cracks; the majority of damage occurred as regions of cross-hatching. All microdamage parameters increased with increasing maximum compressive strain. We also observed exponential relationships between crack numerical density and damage (1(o) - (o)Esec/E0) and between crack length density and damage.  相似文献   

8.
Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5 mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=−0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints.  相似文献   

9.
Microindentation methods are commonly used to determine material properties of soft tissues at the cell or even sub-cellular level. In determining properties from force-displacement (FD) data, it is often assumed that the tissue is initially a stress-free, homogeneous, linear elastic half-space. Residual stress, however, can strongly influence such results. In this paper, we present a new microindentation method for determining both elastic properties and residual stress in soft tissues that, to a first approximation, can be regarded as a pre-stressed layer embedded in or adhered to an underlying relatively soft, elastic foundation. The effects of residual stress are shown using two linear elastic models that approximate specific biological structures. The first model is an axially loaded beam on a relatively soft, elastic foundation (i.e., stress-fiber embedded in cytoplasm), while the second is a radially loaded plate on a foundation (e.g., cell membrane or epithelium). To illustrate our method, we use a nonlinear finite element (FE) model and experimental FD and surface contour data to find elastic properties and residual stress in the early embryonic chick heart, which, in the region near the indenter tip, is approximated as an isotropic circular plate under tension on a foundation. It is shown that the deformation of the surface in a microindentation test can be used along with FD data to estimate material properties, as well as residual stress, in soft tissue structures that can be regarded as a plate under tension on an elastic foundation. This method may not be as useful, however, for structures that behave as a beam on a foundation.  相似文献   

10.
Lixin Shi 《Molecular simulation》2018,44(17):1363-1370
Molecular dynamics (MD) simulations have been performed on the physically crosslinking poly(vinyl alcohol) (PVA) hydrogel to study the deformation mechanisms under uniaxial tensile conditions. The distributions of hydroxyl oxygens and dihedral angle and the number of hydrogen bonds have been analysed to study the structure of the hydrogel. The water content and temperature dependency of mechanical properties have been investigated. The energy contributions from the partially united atom potential have been calculated as a function of strain. It is found that the stress–strain curve comprises toe region, linear region and yield and failure region which is close to most biomaterials. In the toe and yield region, all the contributions to the internal energy change a little. However, in the linear region, the bond stretching and angle bending energy increase rapidly and mainly dominate the region, and the energy increases more rapidly with the increasing water content but the decreasing temperature. The degree of crosslinking decreases with the increasing deformation. The polymer chains occur significant torsional activity in the toe region. Hydrogen bonds are stable in the toe and yield region, but the hydrogen bonds between hydroxyl groups and waters decrease in the linear region.  相似文献   

11.
In the perspective of predicting mechanical from morphological properties of human trabecular bone, the theoretical and experimental relationships between volume fraction, fabric and elastic properties were reviewed.Five data sets of human trabecular bone and two data sets of idealized cells were obtained from various investigators and analyzed statistically with one isotropic and four anisotropic models. For each model, multiple linear regressions were performed to fit the components of both the compliance and the stiffness tensors using volume fraction and in some cases fabric. The adjusted coefficients of determination of the regressions and the average relative errors of the reported versus the predicted tensor norms were calculated. The three anisotropic models that implied a log transformation of the data showed the best results. Excluding the idealized cell data, the adjusted coefficients of determination of these models ranged from 0.80 to 0.95 for the compliance and from 0.80 to 0.94 for the stiffness tensors, while the average relative errors varied between 16% and 55% for the compliance and between 25% and 62% for the stiffness data. The use of volume fraction alone in the isotropic model decreased the adjusted coefficients of determination by 0.03-0.25 and increased the average relative errors by 5-27%.This review confirms the potential of morphology-elasticity relationships for estimation of elastic properties of human trabecular bone using peripheral quantitative computed tomography or magnetic resonance imaging, but emphasizes the need for standardized measurements of mechanical properties at both continuum and tissue level.  相似文献   

12.
Right coronary artery bypass restores blood flow through heart tissues. This also induces changes in flow leading to its failure. By this work the sites which are prone to such changes are localized. The bypass models are developed from transparent silicon rubber of elastic properties similar to arterial tissues. Flow visualization is carried out by photoelasticity technique by using dilute solution of vanadium pentoxide. This analysis carried out under pulsatile flow conditions shows that the proximal stenotic region continues to contribute to the alteration in flow in the hood region of the bypass. Thus making its proximal and distal regions prone to flow-induced changes, which may lead to its blockage over the long duration.  相似文献   

13.
Different material models for an idealized three-layered abdominal aorta are compared using computational techniques to study aneurysm initiation and fully developed aneurysms. The computational model includes fluid–structure interaction (FSI) between the blood vessel and the blood. In order to model aneurysm initiation, the medial region was degenerated to mimic the medial loss occurring in the inception of an aneurysm. Various cases are considered in order to understand their effects on the initiation of an abdominal aortic aneurysm. The layers of the blood vessel were modeled using either linear elastic materials or Mooney–Rivlin (otherwise known as hyperelastic) type materials. The degenerated medial region was also modeled in either linear elastic or hyperelastic-type materials and assumed to be in the shape of an arc with a thin width or a circular ring with different widths. The blood viscosity effect was also considered in the initiation mechanism. In addition, dynamic analysis of the blood vessel was performed without interaction with the blood flow by applying time-dependent pressure inside the lumen in a three-layered abdominal aorta. The stresses, strains, and displacements were compared for a healthy aorta, an initiated aneurysm and a fully developed aneurysm. The study shows that the material modeling of the vessel has a sizable effect on aneurysm initiation and fully developed aneurysms. Different material modeling of degeneration regions also affects the stress–strain response of aneurysm initiation. Additionally, the structural analysis without considering FSI (called noFSI) overestimates the peak von Mises stress by 52% at the interfaces of the layers.  相似文献   

14.
This study shows how a probabilistic microstructural model for fibrous connective tissue behavior can be used to objectively describe soft tissue low-load behavior. More specifically, methods to determine tissue reference length and the transition from the strain-stiffening "toe-region" to the more linear region of the stress-strain curve of fibrous connective tissues are presented. According to a microstructural model for uniaxially loaded collagenous tissues, increasingly more fibers are recruited and bear load with increased tissue elongation. Fiber recruitment is represented statistically according to a Weibull probability density function (PDF). The Weibull PDF location parameter in this formulation corresponds to the stretch at which the first fibers begin to bear load and provides a convenient method of determining reference length. The toe-to-linear region transition is defined by utilizing the Weibull cumulative distribution function (CDF) which relates the fraction of loaded fibers to the tissue elongation. These techniques are illustrated using representative tendon and ligament data from the literature, and are shown to be applicable retrospectively to data from specimens that are not heavily preloaded. The reference length resulting from this technique provides an objective datum from which to calculate stretch, strain, and tangent modulus, while the Weibull CDF provides an objective parameter with which to characterize the limits of low-load behavior.  相似文献   

15.
The elastic and hyperelastic properties of brain tissue are of interest to the medical research community as there are several applications where accurate characterization of these properties is crucial for an accurate outcome. The linear response is applicable to brain elastography, while the non-linear response is of interest for surgical simulation programs. Because of the biological differences between gray and white matter, it is reasonable to expect a difference in their mechanical properties. The goal of this work is to characterize the elastic and hyperelastic properties of the brain gray and white matter. In this method, force-displacement data of these tissues were acquired from 25 different brain samples using an indentation apparatus. These data were processed with an inverse problem algorithm using finite element method as the forward problem solver. Young's modulus and the hyperelastic parameters corresponding to the commonly used Polynomial, Yeoh, Arruda-Boyce, and Ogden models were obtained. The parameters characterizing the linear and non-linear mechanical behavior of gray and white matters were found to be significantly different. Young's modulus was 1787±186 and 1195±157Pa for white matter and gray matter, respectively. Among hyperelastic models, due to its accuracy, fewer parameters and shorter computational time requirements, Yeoh model was found to be the most suitable. Due to the significant differences between the linear and non-linear tissue response, we conclude that incorporating these differences into brain biomechanical models is necessary to increase accuracy.  相似文献   

16.
Survival values have been computed for heat plus radiation data using the three most common radiation survival models: multitarget, multitarget with initial slope, and linear quadratic. By chi 2 analysis, all three models provide an equally good fit to the experimental data. When the survival values are compared, the linear quadratic model provides a slightly better fit in the shoulder region, while the multitarget models provide a slightly better fit in the exponential region.  相似文献   

17.
The kinetics of binding of the substrate camphor to the cytochrome P450(CAM) and the C334A mutant as well as the kinetics of binding of benzphetamine to the wild-type P450(2B4) have been studied by the temperature-jump relaxation technique in order to distinguish between the two models for substrate-induced spin-state transition. These models are the bimolecular model in which spin-state transition occurs in parallel with substrate binding, and the two-step spin-equilibrium model in which substrate binding is a separate step preceding the spin-state transition. With all three P450s, the relaxation rate versus concentration data were linear as predicted by the bimolecular model and inconsistent with the spin-equilibrium model, which predicts a curve reaching saturation. With all three P450s, the relaxation rate versus concentration data exhibited maxima. These results are considered to resolve the controversy in favor of the bimolecular model for substrate-induced spin-state transition. In addition, the results suggest that the bimolecular model may be applicable to other P450s as well.  相似文献   

18.
It is well known that blood vessels exhibit viscoelastic properties, which are modeled in the literature with different mathematical forms and experimental bases. The wide range of existing viscoelastic wall models may produce significantly different blood flow, pressure, and vessel deformation solutions in cardiovascular simulations. In this paper, we present a novel comparative study of two different viscoelastic wall models in nonlinear one-dimensional (1D) simulations of blood flow. The viscoelastic models are from papers by Holenstein et al. in 1980 (model V1) and Valdez-Jasso et al. in 2009 (model V2). The static elastic or zero-frequency responses of both models are chosen to be identical. The nonlinear 1D blood flow equations incorporating wall viscoelasticity are solved using a space-time finite element method and the implementation is verified with the Method of Manufactured Solutions. Simulation results using models V1, V2 and the common static elastic model are compared in three application examples: (i) wave propagation study in an idealized vessel with reflection-free outflow boundary condition; (ii) carotid artery model with nonperiodic boundary conditions; and (iii) subject-specific abdominal aorta model under rest and simulated lower limb exercise conditions. In the wave propagation study the damping and wave speed were largest for model V2 and lowest for the elastic model. In the carotid and abdominal aorta studies the most significant differences between wall models were observed in the hysteresis (pressure-area) loops, which were larger for V2 than V1, indicating that V2 is a more dissipative model. The cross-sectional area oscillations over the cardiac cycle were smaller for the viscoelastic models compared to the elastic model. In the abdominal aorta study, differences between constitutive models were more pronounced under exercise conditions than at rest. Inlet pressure pulse for model V1 was larger than the pulse for V2 and the elastic model in the exercise case. In this paper, we have successfully implemented and verified two viscoelastic wall models in a nonlinear 1D finite element blood flow solver and analyzed differences between these models in various idealized and physiological simulations, including exercise. The computational model of blood flow presented here can be utilized in further studies of the cardiovascular system incorporating viscoelastic wall properties.  相似文献   

19.
Compliance is not linear within the physiological range of pressures, and linear modeling may not describe venous physiology adequately. Forearm and calf venous compliance were assessed in nine subjects. Venous compliance was modeled by using a biphasic model with high- and low-pressure linear phases separated by a breakpoint. This model was compared with a linear model and several exponential models. The biphasic, linear, and two-parameter exponential models best represented the data. The mean coefficient of determination for the biphasic model was greater than for the linear and exponential models in the calf (biphasic 0.94 +/- 0.04, exponential 0.81 +/- 0.16, P = not significant; and linear 0.54 +/- 0.05, P < 0.05) and forearm (biphasic 0.83 +/- 0.17, exponential 0.79 +/- 0.15, P = not significant; and linear 0.51 +/- 0.06, P < 0.05). The breakpoint pressure in the biphasic model was higher in the calf than the forearm, 34.4 +/- 3.9 vs. 29.1 +/- 4.5 mmHg, P < 0.05. A biphasic model can describe limb venous compliance and delineate differences in venous physiology at high and low pressures. The steep low-pressure phase of the compliance curve extends to higher pressures in the calf than in the forearm, thereby enlarging the range of pressures over which hemodynamic regulation by the calf venous circulation occurs.  相似文献   

20.
Modes of Growth in Mammalian Cells   总被引:4,自引:2,他引:2       下载免费PDF全文
The increase of cell volume as a function of time was studied throughout the generation cycle in synchronous cultures of Chinese hamster cells using a Coulter aperture and a multichannel analyzer calibrated against known cell volumes. The experimental results were compared to a mathematical model of cell volume increase which considered the effect of the distribution of individual cell generation times on the progress of the population. Several modes of volume increase, including linear and exponential, were considered. The mean volume vs. time curve was rounded at the ends of the cycle even when linear growth was assumed. The experimental results show that cell volume increased in a smooth fashion as a function of time, with no discontinuities in rate detectable at periods when cells may have been undergoing metabolic shifts as, for example, through the phases associated with DNA synthesis, G1, S, G2. A statistical test on the comparison of the modal cell volume vs. time data to the predictions of linear and exponential growth models accepted both hypotheses within the resolution of these experiments. However, exponential growth was favored over linear growth in one cell line. Volume dispersion was almost constant with time in both sublines which is also consistent with exponential growth. Limitations of the electronic technique of volume measurement and indications for future experiments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号