首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the cardiovascular effects of phasic increases in intrathoracic pressure (ITP) by high-frequency jet ventilation in an acute pentobarbital-anesthetized intact canine model both before and after the induction of acute ventricular failure by large doses of propranolol. Chest and abdominal pneumatic binders were used to further increase ITP. Respiratory frequency, percent inspiratory time, mean ITP, and swings in ITP throughout the respiratory cycle were independently varied at a constant-circulating blood volume. We found that pertubations in mean ITP induced by ventilator adjustments accounted for all observable steady-state hemodynamic changes independent of respiratory frequency, inspiratory time, or phasic respiratory swings in ITP. Changes in ITP were associated with reciprocal changes in both intrathoracic vascular pressures (P less than 0.01) and blood volume (P less than 0.01). When cardiac function was normal, left ventricular (LV) stroke volume decreased, whereas in acute ventricular failure, LV stroke volume increased in response to increasing ITP when apneic LV filling pressure was high (greater than or equal to 17 Torr) and did not change if apneic LV filling pressure was low (less than or equal to 12 Torr). However, in all animals in acute ventricular failure, LV stroke work increased with increasing ITP. Our study demonstrates that the improved cardiac function seen with increasing ITP in acute ventricular failure is dependent upon adequate LV filling and decreased LV afterload in a manner analogous to that seen with arterial vasodilator therapy in heart failure.  相似文献   

2.
Changes in intrathoracic pressure (ITP) can influence cardiac performance by affecting ventricular loading conditions. Because both systemic venous return and factors determining left ventricular (LV) ejection may vary over the cardiac cycle, phasic increases in ITP may differentially affect preload or afterload if delivered at specific points within the cardiac cycle. We studied the hemodynamic effects of cardiac cycle-specific increases in ITP (pulses) delivered by a high-frequency jet ventilator in an acute closed-chested canine model (n = 11), using electromagnetic flow probes to measure biventricular stroke volume. Measurements were taken during a control condition after the induction of acute ventricular failure (AVF) by propranolol hydrochloride and volume infusion. ITP was independently varied without changing lung volume by the inflation of thoracoabdominal binders. Although synchronous pulses had minimal hemodynamic effects in unbound controls, binding pulses timed to occur in early diastole resulted in decreases in LV filling pressure and left ventricular stroke volume (SVlv) (P less than 0.05). In the AVF condition, pulses increased LV performance, evidenced by increases in SVlv (P less than 0.01), despite decreases in LV filling pressure (P less than 0.05). This effect is maximized by binding and by timing the pulses to occur in systole. We conclude that cardiac cycle-specific increases in ITP can significantly affect cardiac performance. These effects appear to be related to the ability of such timed pulses to selectively affect LV preload and afterload.  相似文献   

3.
In the anesthetized closed-chest canine model of Gram-negative endotoxemia (n = 10), we tested the hypothesis that the effect of cardiac cycle-specific intrathoracic pressure pulses delivered by a heart rate-(HR) synchronized high-frequency jet ventilator (sync HFJV) on systolic ventricular performance is dependent on the level of preload. To control for HFJV frequency, hemodynamic responses were also measured at fixed frequency within 15% of HR (async HFJV). Biventricular stroke volumes (SV) were measured by electromagnetic flow probes. Measurements were made before (baseline) and 30 min after infusion of 1 mg/kg Escherichia coli endotoxin (serotype 055:B5) and then after 2 mg/kg propranolol at both low (less than 10 mmHg) left ventricular filling pressure (LVFP) and high (greater than 10 mmHg) LVFP. Ventricular function curves, aortic pressure-flow (P-Q) relationships, and venous return (VR) curves were analyzed. We found that endotoxin did not alter VR curves but shifted the aortic P-Q curves to the left with pressure on the x-axis (P less than 0.05). Volume loading increased SV (P less than 0.01) because of a rightward shift of the VR curve. No specific differences occurred with either sync or async HFJV during endotoxin, presumably because of preserved VR and shifted aortic P-Q. The lack of cardiac cycle-specific effects of ITP appears to be due to the selective endotoxin-induced changes in peripheral vasomotor tone that counterbalance any depressed myocardial contractility.  相似文献   

4.
5.
This study was designed to investigate the importance of vagal cardiac modulation in arterial blood pressure (ABP) stability before and after glycopyrrolate or atropine treatment. Changes in R-R interval (RRI) and ABP were assessed in 10 healthy young (age, 22 +/- 1.8 yr) volunteers during graded lower body negative pressure (LBNP) before and after muscarinic cholinergic (MC) blockade. Transient hypertension was induced by phenylephrine (1 microg/kg body wt), whereas systemic hypotension was induced by bilateral thigh cuff deflation after a 3-min suprasystolic occlusion. Power spectral densities of systolic [systolic blood pressure (SBP)] and diastolic ABP variability were examined. Both antimuscarinic agents elicited tachycardia similarly without significantly affecting baseline ABP. The increase in SBP after phenylephrine injection (+14 +/- 2 mmHg) was significantly augmented with atropine (+26 +/- 2 mmHg) or glycopyrrolate (+27 +/- 3 mmHg) and associated with a diminished reflex bradycardia. The decrease in SBP after cuff deflation (-9.2 +/- 1.2 mmHg) was significantly greater after atropine (-15 +/- 1 mmHg) or glycopyrrolate (-14 +/- 1 mmHg), with abolished reflex tachycardia. LBNP significantly decreased both SBP and RRI. However, after antimuscarinic agents, the reduction in SBP was greater (P < 0.05) and was associated with less tachycardia. Antimuscarinic agents reduced (P < 0.05) the low-frequency (LF; 0.04-0.12 Hz) power of ABP variability at rest. The LF SBP oscillation was significantly augmented during LBNP, which was accentuated (P < 0.05) after antimuscarinic agents and was correlated (r = -0.79) with the decrease in SBP. We conclude that antimuscarinic agents compromised ABP stability by diminishing baroreflex sensitivity, reflecting the importance of vagal cardiac function in hemodynamic homeostasis. The difference between atropine and glycopyrrolate was not significant.  相似文献   

6.
Central venous pressure and cardiac function during spaceflight   总被引:1,自引:0,他引:1  
Early in spaceflight, anapparently paradoxical condition occurs in which, despite an externallyvisible headward fluid shift, measured central venous pressure is lowerbut stroke volume and cardiac output are higher, and heart rate isunchanged from reference measurements made before flight. This paperpresents a set of studies in which a simple three-compartment,steady-state model of cardiovascular function is used, providinginsight into the contributions made by the major mechanisms that couldbe responsible for these events. On the basis of these studies, weconclude that, during weightless spaceflight, the chest relaxes with aconcomitant shape change that increases the volume of the closed chestcavity. This leads to a decrease in intrapleural pressure, ultimately causing a shift of blood into the vessels of the chest, increasing thetransmural filling pressure of the heart, and decreasing the centralvenous pressure. The increase in the transmural filling pressure of theheart is responsible, through a Starling-type mechanism, for theobserved increases in heart size, left ventricular end-diastolicvolume, stroke volume, and cardiac output.

  相似文献   

7.
In acute experiments on cats and in observations made in human subjects, an increase of the negative intrathoracic pressure (NIP) leads to no significant changes of the venous return (VR) mean values. The peak values of the VR, however, increased and decreased more in inspiration and expiration following a deep breathing as compared with the normal breathing. The NIP seems to exert no direct effect upon the VR.  相似文献   

8.
9.
10.
Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease.  相似文献   

11.
Mathew, Oommen P. Effects of transient intrathoracicpressure changes (hiccups) on systemic arterial pressure.J. Appl. Physiol. 83(2): 371-375, 1997.The purpose of the study was to determine the effect oftransient changes in intrathoracic pressure on systemic arterialpressure by utilizing hiccups as a tool. Values of systolic anddiastolic pressures before, during, and after hiccups were determinedin 10 intubated preterm infants. Early-systolic hiccups decreasedsystolic blood pressure significantly (P < 0.05) compared with control(39.38 ± 2.72 vs. 46.46 ± 3.41 mmHg) and posthiccups values,whereas no significant change in systolic blood pressure occurredduring late-systolic hiccups. Diastolic pressure immediately after thehiccups remained unchanged during both early- and late-systolichiccups. In contrast, diastolic pressure decreased significantly(P < 0.05) when hiccups occurred during diastole (both early and late). Systolic pressures of the succeeding cardiac cycle remained unchanged after early-diastolic hiccups, whereas they decreased after late-diastolic hiccups. Theseresults indicate that transient decreases in intrathoracic pressurereduce systemic arterial pressure primarily through an increase in thevolume of the thoracic aorta. A reduction in stroke volume appears tocontribute to the reduction in systolic pressure.

  相似文献   

12.
13.
Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP) is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP). An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine) Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion), moderate (∼100 mmHg, saline), or high levels (∼160 mmHg, angiotensin II) of mean arterial pressure (MAP, n = 5–10 per group) were subjected to IOP challenge (10–120 mmHg, 5 mmHg steps every 3 minutes). Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave) and inner retinal function (scotopic threshold response or STR). Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.  相似文献   

14.
15.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

16.
17.
18.
Calcium fluxes across the sarcoplasmic reticulum membrane are regulated by phosphorylation of a 27,000-dalton membrane-bound protein termed phospholamban. Phospholamban is phosphorylated by three different protein kinases (cAMP-dependent, Ca2+.CAM-dependent and Ca2+.phospholipid dependent) at apparently distinct sites. Phosphorylation by each of the protein kinases increases the rates of active calcium transport by sarcoplasmic reticulum vesicles. The stimulatory effects of protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. The phosphoprotein phosphatase can dephosphorylate both the cAMP-dependent and the Ca2+.CAM-dependent sites of phospholamban. Phosphorylation of phospholamban also occurs in situ, in perfused beating hearts, during the peak of the inotropic response to beta-adrenergic stimulation. Reversal of the stimulatory effects is associated with dephosphorylation of phospholamban. Thus, in vivo and in vitro studies suggest that phospholamban is a regulator for the calcium pump in cardiac sarcoplasmic reticulum. The degree of phospholamban phosphorylation determined by the interaction of specific protein kinases and phosphatases may represent an important control for sarcoplasmic reticulum function and, thus, for the contraction-relaxation cycle in the myocardium. In this review, we summarize recent evidence on physical and structural properties of phospholamban, the proposed structural molecular models for this protein, and the significance of its regulatory role both in vitro and in situ.  相似文献   

19.
20.
Heme oxygenase (HO) is a cytoprotective enzyme that degrades heme (a potent oxidant) to generate carbon monoxide (a vasodilatory gas that has anti-inflammatory properties), bilirubin (an antioxidant derived from biliverdin), and iron (sequestered by ferritin). Because of the properties of inducible HO (HO-1) and its products, we hypothesized that HO-1 would play an important role in the regulation of cardiovascular function. In this article, we will review the role of HO-1 in the regulation of blood pressure and cardiac function and highlight previous studies from our laboratory using gene deletion and gene overexpression transgenic approaches in mice. These studies will include the investigation of HO-1 in the setting of hypertension (renovascular), hypotension (endotoxemia), and ischemia/reperfusion injury (heart). In a chronic renovascular hypertension model, hypertension, cardiac hypertrophy, acute renal failure, and acute mortality induced by one kidney-one clip surgery were more severe in HO-1-null mice. In addition, HO-1-null mice with endotoxemia had earlier resolution of hypotension, yet the mortality and the incidence of end-organ damage were higher in the absence of HO-1. In contrast, mice with cardiac-specific overexpression of HO-1 had an improvement in cardiac function, smaller myocardial infarctions, and reduced inflammatory and oxidative damage after coronary artery ligation and reperfusion. Taken together, these studies suggest that an absence of HO-1 has detrimental consequences, whereas overexpression of HO-1 plays a protective role in hypoperfusion and ischemia/reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号