首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyloric constrictor muscles of the stomach in Squilla can generate spikes by synaptic activation via the motor nerve from the stomatogastric ganglion. Spikes are followed by slow depolarizing afterpotentials (DAPs) which lead to sustained depolarization during a burst of spikes. 1. The frequency of rhythmic bursts induced by continuous depolarization is membrane voltage-dependent. A brief depolarizing or hyperpolarizing pulse can trigger or terminate bursts, respectively, in a threshold-dependent manner. 2. The conductance increases during the DAP response. The amplitude of DAP decreases by imposed depolarization, whereas it increases by hyperpolarization. DAPs from successive spikes sum to produce a sustained depolarizing potential capable of firing a burst. 3. The spike and DAP are reduced in amplitude by decreasing [Ca]o, enhanced by Sr2+ or Ba2+ substituted for Ca2+, and blocked by Co2+ or Mn2+. DAPs are selectively blocked by Ni2+, and the spike is followed by a hyperpolarizing afterpotential. 4. The spike and DAP are prolonged by intracellular injection of the Ca2+ chelator EGTA. A hyperpolarizing afterpotential is abolished by EGTA and enhanced by increasing [Ca]o. The DAP is diminished in Na(+)-free saline and reduced by tetrodotoxin. 5. It is concluded that the muscle fiber is endowed with endogenous oscillatory properties and that the oscillatory membrane events result from changes of a voltage- and time-dependent conductance to Ca2+ and Na+ and a Ca2+ activated conductance to K+.  相似文献   

2.
Membrane potential responses of Paramecium caudatum to an application of K+-rich solution were examined to understand the mechanisms underlying K+-induced backward swimming. A wild-type cell impaled by a microelectrode produced action potentials followed by a sustained depolarization in response to an application of a K+-rich test solution. After termination of the application, a prolongation of the depolarization (depolarizing after-potential) took place. Behavioral mutants incapable of exhibiting K+-induced backward swimming did not show depolarizing afterpotentials. Upon short application of K+-rich solution, the timing and duration of the ciliary reversal of the wild-type cell coincided well with the K+-induced depolarization. The duration of the depolarizing afterpotential decreased as the duration of the application increased. The depolarizing afterpotential recovered slowly after it had been suppressed by a preceding application of the K+-rich solution. By injection of an outward current into the wild-type cell, the action potentials were evoked normally during the period when the K+-induced depolarizing afterpotential was suppressed. We concluded that the prolongation of the depolarizing membrane potential response following the application of the K+-rich solution represents the Ca2+ conductance responsible for the K+-induced backward swimming in P. caudatum and that the characteristics of the K+-induced Ca2+ conductance are distinct from those of the Ca2+ conductance responsible for the action potentials.  相似文献   

3.
The steady-state slope conductance of Limulus ventral photoreceptors increases markedly when the membrane is depolarized from rest. The ionic basis of this rectification has been examined with a voltage-clamp technique. Tail currents that occur when membrane potential is repolarized after having been depolarized have been identified. The tail currents reverse direction at a voltage that becomes more positive when Ko is increased. Rectification is reduced by extracellular 4-aminopyridine and by intracellular injection of tetra-ethyl-ammonium (TEA). These results indicate that the membrane rectification around resting potential is due primarily to voltage-sensitive K+ channels. The increase in gK caused by depolarization is not mediated by a voltage-dependent rise in in Cai++, since intracellular injection of Ca++ causes a decrease rather than an increase in slope conductance. TEA can be used to examine the functional role of the K+ channels because it blocks them without substantially affecting the light-activated Na+ conductance. The effect of TEA on response-intensity curves shows that the K+ channels serve to compress the voltage range of receptor potentials.  相似文献   

4.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

5.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

6.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

7.
8.
We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.  相似文献   

9.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Chen SJ  Wu CC  Yang SN  Lin CI  Yen MH 《Life sciences》2000,68(6):659-668
We have examined the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) in endothelial-denuded strips of rat thoracic aorta ex vivo. The injection of rats with LPS caused a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine. The membrane potential recording showed that endotoxemia caused a hyperpolarization when compared to the control. This hyperpolarization was fully restored by methylene blue (MB; 10 microM) and partially reversed by Nomega-nitro-L-arginine methyl ester (L-NAME; 0.3 mM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), tetraethylammonium (TEA; 10 mM), charybdotoxin (CTX; 0.1 microM), or glibenclamide (GB; 10 microM), however, this hyperpolarization was not significantly affected by apamin (0.1 microM), 4-aminopyridine (4-AP; 1 mM), or Ba2+ (50 microM). In addition, the basal tension of the tissues obtained from endotoxemic rats was enhanced by the following order: MB > or = ODQ > TEA > or = L-NAME > or = CTX > GB; whereas apamin, 4-AP or Ba2+ had no significant effects on these tissues. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Our electrophysiological results further confirmed previous studies showing that in addition to nitric oxide, the large conductance Ca2+-activated K+-channels and ATP-sensitive K+-channels are, most likely, responsible for endotoxin-mediated hyporeactivity to vasoconstrictor agents in vascular smooth muscle.  相似文献   

11.
This study examined the role of outward K(+) currents in the acinar cells underlying secretion from Brunner's glands in guinea pig duodenum. Intracellular recordings were made from single acinar cells in intact acini in in vitro submucosal preparations, and videomicroscopy was employed in the same preparation to correlate these measures with secretion. Mean resting membrane potential was -74 mV and was depolarized by high external K(+) (20 mM) and the K(+) channel blockers 4-aminopyridine (4-AP), quinine, and clotrimazole. The cholinergic agonist carbachol (60-2,000 nM; EC(50) = 200 nM) caused a concentration-dependent initial hyperpolarization of the membrane and an associated decrease in input resistance. This hyperpolarization was significantly decreased by 20 mM external K(+) or membrane hyperpolarization and increased by 1 mM external K(+) or membrane depolarization. It was blocked by the K(+) channel blockers tetraethylammonium (TEA), 4-AP, quinine, and clotrimazole but not iberiotoxin. When videomicroscopy was employed to measure dilation of acinar lumen in the same preparation, carbachol-evoked dilations were altered in a parallel fashion when external K(+) was altered. The dilations were also blocked by the K(+) channel blockers TEA, 4-AP, quinine, and clotrimazole but not iberiotoxin. These findings suggest that activation of outward K(+) currents is fundamental to the initiation of secretion from these glands, consistent with the model of K(+) efflux from the basolateral membrane providing the driving force for secretion. The pharmacological profile suggests that these K(+) channels belong to the intermediate conductance group.  相似文献   

12.
The excitation and contraction features of innervated and sympathetically denervated smooth muscle strips from cat's nictitating membrane have been studied by single sucrose gap arrangement. Increasing of smooth muscle cells sensitivity to drugs were accompanied by elevation of membrane response and the ability to generation of action potentials. Action potentials have been induced by agonists or high potassium concentration in external solution and spontaneously. In innervated muscle action potentials have been evoked as a result of depolarization by high potassium concentration of TEA blockade of potassium conductance. Induced and spontaneously generated action potentials were blocked by organic and inorganic antagonists of potential dependent Ca++ channels. In Ca-free solution action potentials were absent but might be supported by Ba++. Decrease of Na+ had no effect on smooth muscle excitability. It is supposed that activation of potential depended Ca++ channels in smooth muscle cells with pharmaco-mechanical coupling are under influence of sympathetic nerves.  相似文献   

13.
Injection of Mg2+ into spinal motoneurons of cats leads to a depolarization, associated with a fall in membrane conductance, diminution in post-spike hyperpolarization, and increased excitability. This action has an apparent reversal level substantially more negative than the resting potential, and can be ascribed to a fall in K+ membrane conductance. Since these effects are opposite to those produced by intracellular Ca2+, it is suggested that Mg2+ probably competes with Ca2+ at the Ca2+-activated K+ ionophoreal free ionophores. Neuronal excitability can be regulated by the ratio of internal free Ca2+/Mg2+.  相似文献   

14.
Voltage-dependent conductances in Limulus ventral photoreceptors   总被引:7,自引:7,他引:0       下载免费PDF全文
The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.  相似文献   

15.
In the pregnant rat, spontaneous electrical activity of circular muscle (CM) changes from single, plateau-type action potentials at early and mid-term to repetitive spike trains at term. To examine mechanisms underlying the plateau, we studied the effects of potassium channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) on membrane potentials in CM from rats on gestation Days 14, 15, 16, 21 (term). Apparent membrane conductance was measured at rest and during the plateau in Day 14 muscles with and without TEA. 4-AP depolarized the resting membrane on all gestation days. Therefore, a direct action of 4-AP on plateau configuration could not be separated from an indirect effect of depolarization. TEA did not affect the resting potential but increased action potential size and depolarization rate on all gestation days. On Day 16, TEA reduced plateau amplitude, unmasking small, repetitive depolarizations. D-600 decreased plateau amplitude and duration and attenuated these effects of TEA. Plateau conductance increased initially then decreased before membrane repolarization. Membrane conductance and outward rectification during the plateau were reduced by TEA. The plateau potential may result from an outwardly rectifying TEA-sensitive current combined with a slow inward current, the plateau magnitude being determined by the relative intensity of each current.  相似文献   

16.
The time-dependence of ionophore A23187-induced changes in the conductance of the Ca2+-sensitive K+ channels of the human red cell has been monitored with ion-specific electrodes. The membrane potential was reflected in CCCP-mediated pH changes in a buffer-free extracellular medium, and changes in extracellular K+ activity and electrode potential of an extracellular Ca2+-electrode were recorded. Within a narrow range of ionophore-mediated Ca2+ influx, the above-mentioned parameters were found to oscillate when ionophore was added to a suspension of glucose-fed cells. The period of oscillation was about 2 min/cycle depending on ionophore concentration, and the amplitude of hyperpolarization was about 60 mV, corresponding to a maximal gK+ of the same magnitude as gCl-. Without CCCP present no oscillation in K+ conductance was observed. The Ca2+ affinity for the opening process was in the micromolar range. The closing of the K+ channels was a spontaneous process in that the depolarization was well under way before the Ca2+-ATPase-mediated Ca2+ net efflux started. Below the Ca2+ influx range for oscillations, no response was observed for up to 20 min after the addition of ionophore. Above the upper limit, a permanent hyperpolarization resulted with an extracellular K+ activity increasing monotonically as a function of time. In experiments with ATP-depleted cells, responses of the latter type ensued at all ionophore concentrations above the lower limit. Addition of surplus EGTA to suspensions of hyperpolarized cells restores the normal membrane potential in the case of glucose-fed cells, whereas the K+-channels in ATP-depleted cells remained open.  相似文献   

17.
The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+-free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to-one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+-activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW.  相似文献   

18.
It has been assumed that uptake of extracellular Ca2+ occurs through ligand-activated Ca2+ channels in anti-IgM stimulated human B cells. If so, then uptake should be associated with a depolarizing inward current. Instead, a hyperpolarization due to Ca2+-sensitive K+ conductance is observed. To demonstrate conductive Ca2+ channels in human B lymphocytes, we loaded the cells with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetate (BAPTA), an intracellular Ca2+ chelating agent. This increased the magnitude of the Ca2+ current and delayed the Ca2+-dependent K+ conductance. In BAPTA-loaded B cells suspended in Ca2+-free medium and activated with anti-IgM, reintroduction of Ca2+ resulted in a depolarization that was inhibited by high (microM) concentrations of verapamil and was observed when Ca2+ was replaced by Ba2+ but not Mg2+. These data demonstrate the opening of selective, Ca2+ conductive channels in human B cells following cross-linking of surface immunoglobulins.  相似文献   

19.
The effect of changing the ionic composition of bathing fluid on the receptor potential of primary endings has been examined in isolated mammalian spindles whose capsule was removed in the sensory region. After impulse activity is blocked by tetrodotoxin, ramp-and-hold stretch evokes a characteristic pattern of potential change consisting of a greater dynamic depolarization during the ramp phase and a smaller static depolarization during the hold phase. After a high-velocity ramp there is a transient post-dynamic undershoot to below the static level. On release from hold stretch, the potential shows a postrelease undershoot relative to base line. The depolarization produced by stretch is rapidly decreased by the removal of Na+ and Ca2+. Addition of normal Ca2+ partly restores the response. Stretch appears to increase the conductance to Na+ and Ca2+ in the sensory terminals. The postdynamic undershoot is diminished by raising external K+ and blocked by tetraethylammonium (TEA). It apparently results from a voltage-dependent potassium conductance. The postrelease undershoot is decreased by raising external K+, but is not blocked by TEA. It is presumably caused by a relative increase in potassium conductance on release. Substitution of isethionate for Cl- or the addition of ouabain does not alter the postdynamic and postrelease undershoots.  相似文献   

20.
Human lymphocytes and rat mast cells, two non-excitable cellular models, were used to investigate membrane potential changes accompanying Ca2+ signals. Cells were stimulated with agents known to induce both Ca2+ release from internal stores and influx of extracellular Ca2+, namely thapsigargin, ionomycin and compound 48/80. Thapsigargin and ionomycin were used to activate lymphocytes, while compound 48/80 was used to stimulate mast cells. Membrane potential changes and Ca2+ concentration were monitored with the fluorescent dyes bis-oxonol and fura-2, respectively. In lymphocytes, thapsigargin induced a hyperpolarization temporally correlated with the increase in intracellular Ca2+ concentration. This hyperpolarization is due to activation of a K+ conductance which consists of two phases, a first phase independent on external Ca2+ and a second one blocked in a Ca2+-free medium. Ionomycin induced a Ca2+-dependent depolarization attributed to a massive influx of external Ca2+. On the other hand, stimulation of mast cells with compound 48/80 produced a fast hyperpolarization and an increase in intracellular Ca2+ levels. Besides different time-courses, this hyperpolarization differs from that induced by thapsigargin in lymphocytes in two aspects, it is mainly due to a Cl(-)-entry current and exit of K+ and it is completely inhibited in the absence of extracellular Ca2+. Compound 48/80-induced histamine release is not related to membrane potential changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号