首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We used genome-wide RNA interference (RNAi) to identify genes that affect apoptosis in the C. elegans germ line. RNAi-mediated knockdown of 21 genes caused a moderate to strong increase in germ cell death. Genetic epistasis studies with these RNAi candidates showed that a large subset (16/21) requires p53 to activate germ cell apoptosis. Apoptosis following knockdown of the genes in the p53-dependent class also depended on a functional DNA damage response pathway, suggesting that these genes might function in DNA repair or to maintain genome integrity. As apoptotic pathways are conserved, orthologues of the worm germline apoptosis genes presented here could be involved in the maintenance of genomic stability, p53 activation, and fertility in mammals.  相似文献   

3.
4.
5.
6.
Previous studies have shown that p53 is involved in the repair of bleomycin-induced DNA damage, and that the frequency of bleomycin-induced chromatid aberrations is elevated in G(2)-treated p53 null transgenic mouse embryo fibroblasts (MEF) as compared to isogenic controls. To further characterize p53-mediated DNA repair, we studied the effect of p53 status on the ability of the DNA repair inhibitor 1-ss-D-arabinofuranosylcytosine (AraC) to sensitize MEF to bleomycin-induced chromatid aberrations. Both p53+/+ and p53-/- MEF were treated in G(2) with 0 to 7.5 microg/ml bleomycin in the presence or absence of AraC (5x10(-5) M). The frequency of bleomycin-induced chromatid aberrations was significantly higher in p53-/- cells than wild-type cells in the absence of AraC. AraC treatment significantly increased the frequency of bleomycin-induced chromatid aberrations in p53+/+ MEF to the levels in p53-/- (no AraC) but had no effect in p53-/- MEF. These results suggest that an AraC-sensitive DNA repair component is altered or absent in p53-/- cells. Similar results were observed in p53-mutant WTK1 and wild-type TK6 human lymphoblast cells exposed to 0 to 3 microg/ml bleomycin in G(2). However, AraC did cause a small increase in bleomycin sensitivity in WTK1 cells. This difference from the p53-/- MEF response may be due to differences in p53-mutant phenotype. To determine whether mutation of p53 alters DNA replication fidelity, p53+/+ and p53-/- MEF were exposed to 0 to 1 microg/ml mitomycin C (MMC). MMC did not induce chromosome aberrations in either cell line treated in G(2) but did with the same effectiveness in both cell lines treated in S-phase. Thus, p53 deficiency does not affect DNA replication fidelity or the repair of MMC-induced DNA damage.  相似文献   

7.
The tumor suppressor protein p53 plays a central role in the multiple response pathways activated by DNA damage. In particular, p53 is involved in both the pro-survival response of cell cycle arrest and DNA repair, and the pro-death response of apoptosis. How does the p53 network coordinate the different pathways that lead to the opposite cell fates and what is its strategy in making the life-death decisions? To address these questions, we develop an integrated mathematical model that embraces three key modules of the p53 network: p53 core regulation, p53-induced cell cycle arrest and p53-dependent apoptosis initiation. Our analyses reveal that different aspects of the nuclear p53 dynamic profile are being used to differentially regulate the pro-survival and the pro-death modules. While the activation of the pro-survival module is dependent on the current or recent status of the DNA damage, the activation of the pro-death module relies on the accumulation or integration of the damage level over time. Thus, the cell will take the death fate if it cannot recover from the damage within a time period that is inversely proportional to the damage level. This “adaptive timer” strategy is likely to be adopted in other stress response systems.  相似文献   

8.
The induction of DNA damage together with the interference with DNA repair represents a promising strategy in cancer treatment. Here we show that the PARP-1/2/3 inhibitor AZD2461 in combination with the CHK1 inhibitor UCN-01 altered the DNA damage response and reduced cell proliferation in PEL cells, an aggressive B cell lymphoma highly resistant to chemotherapies.AZD2461/UCN-01 combination activated p53/p21 and downregulated c-Myc in these cells, leading to a reduced expression level of RAD51, molecule involved in DNA repair. The effect of AZD2461/UCN-01 on c-Myc and p53/p21 was inter-dependent and, besides impairing cell proliferation, contributed to the activation of the replicative cycle of KSHV, carried in a latent state in PEL cells. Finally, we found that the pharmacological or genetic inhibition of p21 counteracted the viral lytic cycle activation and further reduced PEL cell proliferation, suggesting that it could induce a double beneficial effect in this setting. This study unveils that, therapeutic approaches, based on the induction of DNA damage and the reduction of DNA repair, could be used to successfully treat this malignant lymphoma.  相似文献   

9.
10.
11.
In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy.  相似文献   

12.
The tumor suppressor protein p53 plays a central role in modulating the cellular responses to DNA damage. Several recent studies, undertaken with the whole genomic DNA or full-length gene segments, have shown that p53 is involved in nucleotide excision repair and it selectively influences the adduct removal from the non-transcribed strand in the genome. In this study, we have analyzed the damage induction at nucleotide resolution by ligase-mediated polymerase chain reaction and compared the repair of ultraviolet radiation-induced cyclobutane pyrimidine dimers within exon 8 of p53 gene in normal and Li-Fraumeni syndrome fibroblasts as well as in normal and human papillomavirus 16 E6 and E7 protein-expressing human mammary epithelial cells. The results demonstrate that (i) loss or disruption of p53 function decreases efficiency of DNA repair, by preferentially affecting the repair of non-transcribed strand and of intrinsically slow repair sites in transcribed strand; (ii) mutant p53 protein affects DNA repair, at least of non-transcribed strand, in a dominant negative manner; and (iii) pRb does not have an effect on the repair of DNA damage within transcribed or non-transcribed strand. The overall data suggest that p53 could regulate excision repair or related events through direct protein-protein interaction.  相似文献   

13.
The DNA mismatch repair pathway is well known for its role in correcting biosynthetic errors of DNA replication. We report here a novel role for mismatch repair in signaling programmed cell death in response to DNA damage induced by chemical carcinogens. Cells proficient in mismatch repair were highly sensitive to the cytotoxic effects of chemical carcinogens, while cells defective in either human MutS or MutL homologs were relatively insensitive. Since wild-type cells but not mutant cells underwent apoptosis upon treatment with chemical carcinogens, the apoptotic response is dependent on a functional mismatch repair system. By analyzing p53 expression in several pairs of cell lines, we found that the mismatch repair-dependent apoptotic response was mediated through both p53-dependent and p53-independent pathways. In vitro biochemical studies demonstrated that the human mismatch recognition proteins hMutSalpha and hMutSbeta efficiently recognized DNA damage induced by chemical carcinogens, suggesting a direct participation of mismatch repair proteins in mediating the apoptotic response. Taken together, these studies further elucidate the mechanism by which mismatch repair deficiency predisposes to cancer, i.e., the deficiency not only causes a failure to repair mismatches generated during DNA metabolism but also fails to direct damaged and mutation-prone cells to commit suicide.  相似文献   

14.
15.
16.
17.
DNA repair is activated in early stages of p53-induced apoptosis   总被引:3,自引:0,他引:3  
p53 is a complex molecule involved in apoptosis, cell cycle arrest, and DNA repair. Since apoptosis may play an important role in deletion of neoplastic cells, an understanding of the mechanism of p53-induced apoptosis may be critical for possible future therapeutic interventions. Recent evidence suggests that p53-induced apoptosis may involve members of the nucleotide excision repair (NER) family, linking these two cellular events. Our work using a temperature-sensitive p53 construct further analyzes p53-induced apoptosis in cultured murine mammary epithelial cells and also suggests that DNA repair plays a role in that process. Although p21 is induced in our system, apoptosis occurs without a detectable preceding G1 cell cycle arrest and independent of cellular alterations brought on by the temperature shift. In addition, clonogenic assays suggest that early stages of p53-induced apoptosis may be reversible upon removal of the apoptosis stimulus. As a possible explanation for this reversibility, our results show that general DNA repair activity increases early in p53-induced apoptosis. We also show that caspase-3 is activated at a timepoint when colony formation begins to drop, suggesting a possible mechanism for the point of no return in p53-induced apoptosis.  相似文献   

18.
UV or gamma irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin-dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21 function.  相似文献   

19.
53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for "classic" nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.  相似文献   

20.
Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号