共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shuang Zhao XinZhe Tian YunLai Ren JianJi Wang JunNa Liu YunLi Ren 《Journal of molecular modeling》2016,22(8):195
Density functional calculations have been used to investigate the interactions of 1-(2-hydroxyethyl)-3-methylimidazolium ([C2OHmim]+)-based ionic liquids (hydroxyl ILs) with water (H2O), methanol (CH3OH), and dimethyl sulfoxide (DMSO). It was found that the cosolvent molecules interact with the anion and cation of each ionic liquid through different atoms, i.e., H and O atoms, respectively. The interactions between the cosolvent molecules and 1-ethyl-3-methylimizolium ([C2mim]+)-based ionic liquids (nonhydroxyl ILs) were also studied for comparison. In the cosolvent–[nonhydroxyl ILs] systems, a furcated H-bond was formed between the O atom of the cosolvent molecule and the C2-H and C6-H, while there were always H-bonds involving the OH group of the cation in the cosolvent–[hydroxyl ILs] systems. Introducing an OH group on the ethyl side of the imidazolium ring may change the order of solubility of the molecular liquids. 相似文献
3.
The nature of the complexes and equilibria shown by solutions of protohaemin in dimethyl sulphoxide/water mixtures and in the presence of acid and base were studied by u.v.-visible spectrophotometry. In neutral solutions containing from 40 to 100% dimethyl sulphoxide, haemin is present as a monomeric complex in which the Cl-ion is not coordinated. Only a single pH-dependent equilibrium pK12 is observed over the range 40-80% dimethylsulphoxide, corresponding to formation of the mu-oxo dimer. As the dimethyl sulphoxide content is lowered below 35%, so the single equilibrium (pK12) is replaced by two equilibria (pK1 and pK2); with solutions of 5 microM-haemin, pK1 decreases (from pK12 7.55 in 65% dimethyl sulphoxide to pK1 approx. 1.5 in 0.01% dimethyl sulphoxide), whereas pK2 hardly changes (from pK12 7.55 in 65% to pK2 approx. 7.5 in 0.01%). 相似文献
4.
The structure of horseradish peroxidase (HRP) in phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO) mixed solvents at different compositions is investigated by IR, electronic absorption, and fluorescence spectroscopies. The fluorescence spectra and the amide I spectra of ferric HRP [HRP(Fe3+)] show that overall structural changes are relatively small up to 60% DMSO. Although the amide I band of HRP(Fe3+) shows a gradual change in the secondary structure and a decrease in the contents of a helices, its fluorescence spectra indicate that the distance between the heme and Trp173 is almost constant. In contrast, the changes in the positions of the Soret bands for resting HRP(Fe3+) and catalytic intermediates (compounds I and II) and the IR spectra at the C-O stretching vibration mode of carbonyl ferrous HRP [HRP(Fe2+)-CO] show that the microenvironment in the distal heme pocket is altered, even with low DMSO contents. The large reduction of the catalytic activity of HRP even at low DMSO contents can be attributed to the structural transition in the distal heme pocket. In PBS/DMSO mixtures containing more than 70 vol % DMSO, HRP undergoes large structural changes, including a large loss of the secondary structure and a dissociation of the heme from the apoprotein. The presence of the components of the amide I band that can be assigned to strongly hydrogen bonding amide C=O groups at 1616 and 1684 cm(-1) suggests that the denatured HRP may aggregate through strong hydrogen bonds. 相似文献
5.
The effect of solvent on the rate of leuprolide degradation and on the structure of the degradation products was explored. Leuprolide solutions (370 mg/mL) were prepared in water and dimethyl sulfoxide (DMSO) for delivery in DUROS osmotic implants. Both solvent systems demonstrated better than 90% stability after 1 year at 37 degrees C, where the DMSO formulation afforded better stability than the aqueous formulation and was used in subsequent clinical trials. The rate of leuprolide degradation in DMSO was also observed to accelerate with increasing moisture content, indicating that the aprotic solvent minimized chemical degradation. Interestingly, leuprolide degradation products varied with formulation vehicle. The proportions of leuprolide degradation products observed to form in water and DMSO at 37 degrees C were hydrolysis > aggregation > isomerization > oxidation and aggregation > oxidation > hydrolysis > isomerization, respectively. Specifically, more N-terminal hydrolysis and acetylation were observed under aqueous conditions, and increased Trp oxidation and Ser beta-elimination were seen under non-aqueous conditions. Furthermore, the major chemical degradation pathway changed with temperature in the DMSO formulation (decreasing oxidation with increasing temperature), but not in the aqueous formulation. 相似文献
6.
Kiselev MA Gutberlet T Lesieur P Hauss T Ollivon M Neubert RH 《Chemistry and physics of lipids》2005,133(2):181-193
X-ray diffraction, neutron diffraction and differential scanning calorimetry were used to investigate phase transitions in the ternary system phospholipid/dimethyl sulfoxide (DMSO)/water under cooling for three homologous phospholipids: dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). Below the temperature of ice formation from -40 to -113 degrees C, a new lamellar phase of DPPC and DSPC was found at and above a DMSO molar fraction of X(DMSO) = 0.05. Below X(DMSO) = 0.05 only a single dehydrated Lc-phase exists after ice formation. The new phase has an increased membrane repeat distance and coexists with a dehydrated Lc-phase. DPPC with a DMSO molar fraction of X(DMSO) = 0.07 shows a membrane repeat distance of the new phase of d = 6.61 +/- 0.03 nm. The value of d increases at the increase of X(DMSO). The new phase was not observed in the ternary system with DMPC. No correlation between the new phase and the glass transition of bound water in the intermembrane space was detected. The new phase was detected only in the systems with excess of water. The creation of the new phase demonstrates the specific DMSO interaction with hydrocarbon chains. 相似文献
7.
Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli. 总被引:1,自引:1,他引:1 下载免费PDF全文
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane. 相似文献
8.
G I Malinin 《The journal of histochemistry and cytochemistry》1977,25(3):188-192
Periodic acid (1% w/v) solvated by anhydrous dimethyl sulfoxide (DMSO) readily induced a strong Schiff reaction in a variety of structures containing polysaccharides, but not glycogen. With the increasing amounts of water added to DMSO, glycogen was also oxidized, while the selective localization of other polysaccharides remained unimpaired. Periodate, solvated in the anhydrous acetic acid-DMSO mixture, rapidly induced concomitant oxidation of nucin and glycogen-containing structures. Sodium bisulfite addition derivatives of carbonyls, induced by periodate oxidation in DMSO, were stained meta- and orthochromatically with toluidine blue at controlled pH. Certain metachromatic tissue components were strongly birefringent in polarized light in contrast to the identical structures oxidized by aqueous periodate. Marked differences in staining reactions elicited in identical structures by periodate in DMSO as compared with aqueous periodate suggest that DMSO-periodate method considerably enhances the range of histochemical oxidations by periodate. 相似文献
9.
Cryoprotection by dimethyl sulfoxide and dimethyl sulfone 总被引:1,自引:0,他引:1
Preservation of cells and tissues at low temperatures requires the presence of effective cryoprotectants with low toxicity to which cells are relatively permeable. Two similar compounds, dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO2), exhibit both features for cryoprotectants, yet DMSO is a very effective cryoprotectant while DMSO2 is ineffective. This anomaly was investigated by relating observations on the phase behavior of DMSO and DMSO2 in aqueous solutions to the recovery of human lymphocytes frozen in the presence of these compounds. The lack of cryoprotection in the presence of DMSO2 appears to be due to the precipitation of DMSO2 from the solution at subzero temperatures. The observation of reduced cell recovery after freezing with increasing concentrations of DMSO2 implies that cell damage is related to the amount of solid DMSO2 present. Precipitation of DMSO2 occurs both intra- and extracellularly, but it is argued that intracellular precipitation of DMSO2 is the damaging phenomenon. Cryoprotective compounds are normally selected based on the criteria of low toxicity and permeability to the plasma membrane. An additional condition, solubility, must be included for interpretation of experimental data and for development of effective protocols for cryopreservation. 相似文献
10.
A solvolytic N-desulfation of heparin was developed by treatment of its pyridinium salt with dimethyl sulfoxide containing 5% of water or methanol for 1.5 h at 50 degrees. Chemical and chromatographic studies showed that the solvolytic desulfation is a useful method for N-desulfation of heparin without depolymerization of the heparin molecule. The partially N-desulfated heparins were also obtained by treatment with dimethyl sulfoxide containing 5% of water at 20 degrees, and their anticoagulant activity is related to the degree of N-desulfation. 相似文献
11.
12.
A solvolytic desulfation of glycosaminoglycuronan sulfates was developed by treatment of their pyridinium salts with dimethyl sulfoxide containing 10% of water or methanol at 80-100 degrees. Chemical and physical studies showed that the solvolytic desulfation is a useful method applicable to all the known glycosaminoglycuronan sulfates without producing depolymerization or unfavorable chemical changes in the polysaccharide molecules. An almost completely desulfated, N-acetylated heparin (S: 0.12%) was obtained by treatment of an N-desulfated and N-acetylated heparin with dimethyl sulfoxide containing 10% of methanol for 2 h at 100 degrees. 相似文献
13.
In an effort to understand the nature of chromophore-protein interactions in bacteriorhodopsin (bR), we have reinvestigated dimethyl sulfoxide (DMSO)-induced changes in bR [Oesterhelt et al. (1973) Eur. J. Biochem. 40, 453-463]. We observe that dark-adapted bR (bR560) in aqueous DMSO undergoes reversible transformation to a species absorbing maximally at 480 nm (bR480). Beginning at 40% DMSO, this change results in complete conversion to bR480 at 60% DMSO. The kinetics of the reaction reveal that this transformation takes place predominantly through the all-trans isomeric form of the pigment. Thermal isomerization of the 13-cis chromophore to the all-trans form is, therefore, the rate-limiting step in the formation of bR480 from the dark-adapted bR. As in native bR, the chromophore in bR480 is linked to the protein via a protonated Schiff base, and its isomeric composition is predominantly all-trans. The formation of bR480 is associated with minor changes in the protein secondary structure, and the membrane retains crystallinity. These changes in the protein structure result in a diminished chromophore-protein interaction near the Schiff base region in bR480. Thus, we attribute the observed spectroscopic changes in bR in DMSO to structural alteration of the protein. The 13-cis chromophoric pigment appears to be resistant to this solvent-induced change. The changes in the protein structure need not be very large; displacement of the protein counterion(s) to the Schiff base, resulting from minor changes in the protein structure, can produce the observed spectral shift. 相似文献
14.
Sungjong Kwak 《Chemistry and physics of lipids》2009,161(1):11-21
Dimethyl sulfoxide (DMSO), an efficient transdermal enhancer, is proposed to alter the skin barrier by, at least partially, disturbing the lipid phase of the stratum corneum (SC). We have investigated, using differential scanning calorimetry and vibrational microspectroscopy, the effect of DMSO on the phase behavior of a lipid mixture formed by N-palmitoyl-d-erythro-sphingosine, deuterated palmitic acid, and cholesterol, mimicking the SC lipid phase. Our results reveal that DMSO favors the disordering of the lipid acyl chains. Moreover, the effect of DMSO is strongly concentration dependent and this dependence is reminiscent of that describing the DMSO transdermal enhancement. DMSO-induced fluidification affects primarily the fatty acid in the mixture. Therefore, it is proposed that the molecular mechanism of the transdermal transport enhancement caused by DMSO is associated with its H-bonding properties; its presence alters the interfacial H-bond network involving the fatty acid molecules and consequently the cohesive lipid packing. 相似文献
15.
16.
Toshiyo Kato Shigeru Endo Toshimichi Fujiwara Kuniaki Nagayama 《Journal of biomolecular NMR》1993,3(6):653-673
Summary With the combined use of various two-dimensional (2D) NMR techniques, a complete assignment of the 1H and 13C resonances of oxytocin,
, for two molecular states, protonated and unprotonated at the N-terminal group, was performed in dimethyl sulfoxide. A small but distinct change in the backbone conformation of the six-residue cyclic moiety, associated with the protonation, was first suggested from those NMR parameters relevant to conformation, such as change with temperature in the chemical shifts of the peptide amide protons and changes in chemical shifts and homonuclear as well as heteronuclear three-bond coupling constants. The solution structures of oxytocin for the protonated and unprotonated forms were then calculated using distance analysis in dihedral-angle space, based on a relaxation matrix evaluated from quantitative NOE intensities at different mixing times. Total amounts of 93 and 105 distances were determined for the protonated and the unprotonated forms, respectively. There were 25 interresidue distances relevant to the structure of the cyclic moiety for the protonated form of oxytocin and 43 for the unprotonated form. Overall structures with the lowest target penalty function were similar between the two forms, having a -turn structure at the endocyclic residues of the Tyr-Ile-Gln-Asn moiety. The local backbone conformations near the N-terminus, however, were significantly different between the two forms. This was found to be due to a change in the dihedral angle of the disulfide bridge (ss around C-S-S-C), which closes the ring in the cyclic peptide. The dihedral angle was about +90° for the unprotonated form and an intermediate value of about +45° for the protonated form. 相似文献
17.
18.
Lana S. Rittmann Carole L. Jelsema Edward L. Schwartz Asterios S. Tsiftsoglou Alan C. Sartorelli 《Journal of cellular physiology》1982,110(1):50-55
The effects of dimethyl sulfoxide (DMSO)-induced differentiation of Friend leukemia cells in vitro on the lipid composition of these cells have been examined. DMSO had no early effect on the incorporation of either [14C] glycerol or [3H] methyl choline chloride into the total lipids or individual phospholipids of Friend cells up to 240 min after addition of the inducer. Examination of DMSO-diferentiated Friend cell phospholipids revealed a percentage composition which was similar to control cells, with phosphatidylcholine and phosphatidylethanolamine in both uninduced and differentiated cells accounting for over 75% of the total phospholipid. Sphingomyelin levels were significantly lower in Friend cells than in normal adult mouse erythrocytes, and differentiation of murine erythroleukemia cells resulted in a further lowering of this phospholipid. In contrast, a significant increase in the level of phosphatidylethanolamine occured as a result of maturation. Fatty acid analysis of major lipid classes of differentiated Friend cells showed significant reduction in saturation, but no alteration in chain length in comparison to undifferentiated cells. A pronounced decrease in the cellular content of both free and esterified cholesterol, which resulted in a 45% decrease in the ratio of cholesterol/phospholipids, occurred in cells differentiated by the polar solvent. The findings indicate that erythrodifferentiation induced by DMSO results in a variety of changes in the lipid composition of the membranes of Friend leukemia cells. 相似文献
19.
NMR spin-half pair dipolar echo measurements are reported for the lamellar (dispersions and multibilayer stacks) and hexagonal phases of potassium palmitate/2H2O mixtures. In the lamellar Lbeta and Lgamma (gel) phases the alkyl chains are rigid and perfectly ordered, while in the lamellar Lalpha and hexagonal phases they are flexible and disordered. In particular, the measurements show that in the fluid lamellar Lalpha phase the chain is "bent" at the C9-C10 segment; but is "straight" in the hexagonal phase. 相似文献