首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting with two temperature-sensitive mutants (rpa190-1 and rpa190-5) of Saccharomyces cerevisiae, both of which are amino acid substitutions in the putative zinc-binding domain of the largest subunit (A190) of RNA polymerase I, we have isolated many independent pseudorevertants carrying extragenic suppressors (SRP) of rpa190 mutations. All the SRP mutations were dominant over the corresponding wild-type genes. They were classified into at least seven different loci by crossing each suppressed mutant with all of the other suppressed mutants and analyzing segregants. SRP mutations representing each of the seven loci were studied for their effects on other known rpa190 mutations. All of the SRP mutations were able to suppress both rpa190-1 and rpa190-5. In addition, one particular suppressor, SRP5, was found to suppress two other rpa190 mutations as well as an rpa190 deletion. Southern blot analysis combined with genetic crosses demonstrated that SRP5 maps to a region on chromosome XV loosely linked to rpa190 and represents a transposed mutant gene in two copies. Analysis of the A190 subunit by using anti-A190 antiserum indicated that the cellular concentration of A190 and hence of RNA polymerase I decreases in rpa190-1 mutants after a shift to 37 degrees C and that in the mutant strain carrying SRP5 this decrease is partially alleviated, presumably because of increased synthesis caused by increased gene dosage. These results suggest that the zinc-binding domain plays an important role in protein-protein interaction essential for the assembly and/or stability of the enzyme, regardless of whether it also participates directly in the interaction of the assembled enzyme with DNA.  相似文献   

2.
3.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42?kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.  相似文献   

4.
5.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42 kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes. Received: 20 April 1999 / Accepted: 26 July 1999  相似文献   

6.
RNA polymerase I of Saccharomyces cerevisiae contains a small subunit, A12.2, encoded by RPA12, that was previously shown to be involved in the assembly and/or stabilization of the largest subunit, A190, of RNA polymerase I. To examine whether an equivalent subunit is present in another eukaryotic RNA polymerase I, we have cloned a Schizosaccahromyces pombe cDNA that is able to complement the rpa12 mutation in S. cerevisiae. The gene, named Sprpa12+, encodes a polypeptide of 119 amino acids that shows 55% identity to S. cerevisiae A12. 2 over its entire length, including two zinc-finger motifs. Disruption of the chromosomal Sprpa12+ gene shows that it is required for growth at higher temperatures but not at lower temperatures. Expression of Sprpa190+/nuc1+, which encodes the largest subunit of the S. pombe RNA polymerase I, from a multicopy plasmid can partially suppress the growth defect of the Sprpa12 disruptant at higher temperatures. These findings suggest that A12.2 subunit is functionally and structurally conserved between S. cerevisiae and S. pombe. Finally, the analysis of mutants suggests that SpRPA12 requires the zinc-finger domain in the N-terminal region but not the one in the C-terminal region for its function.  相似文献   

7.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

8.
9.
10.
11.
The nucleolus in Saccharomyces cerevisiae is a crescent-shaped structure that makes extensive contact with the nuclear envelope. In different chromosomal rDNA deletion mutants that we have analyzed, the nucleolus is not organized into a crescent structure, as determined by immunofluorescence microscopy, fluorescence in situ hybridization, and electron microscopy. A strain carrying a plasmid with a single rDNA repeat transcribed by RNA polymerase I (Pol I) contained a fragmented nucleolus distributed throughout the nucleus, primarily localized at the nuclear periphery. A strain carrying a plasmid with the 35S rRNA coding region fused to the GAL7 promoter and transcribed by Pol II contained a rounded nucleolus that often lacked extensive contact with the nuclear envelope. Ultrastructurally distinct domains were observed within the round nucleolus. A similar rounded nucleolar morphology was also observed in strains carrying the Pol I plasmid in combination with mutations that affect Pol I function. In a Pol I–defective mutant strain that carried copies of the GAL7-35S rDNA fusion gene integrated into the chromosomal rDNA locus, the nucleolus exhibited a round morphology, but was more closely associated with the nuclear envelope in the form of a bulge. Thus, both the organization of the rDNA genes and the type of polymerase involved in rDNA expression strongly influence the organization and localization of the nucleolus.  相似文献   

12.
13.
14.
The fidelity role of DNA polymerase I in chromosomal DNA replication in E. coli was investigated using the rpoB forward target. These experiments indicated that in a strain carrying a proofreading-exonuclease-defective form of Pol I (polAexo mutant) the frequency of rpoB mutations increased by about 2-fold, consistent with a model that the fidelity of DNA polymerase I is important in controlling the overall fidelity of chromosomal DNA replication. DNA sequencing of rpoB mutants revealed that the Pol I exonuclease deficiency lead to an increase in a variety of base-substitution mutations. A polAexo mutator effect was also observed in strains defective in DNA mismatch repair and carrying the dnaE915 antimutator allele. Overall, the data are consistent with a proposed role of Pol I in the faithful completion of Okazaki fragment gaps at the replication fork.  相似文献   

15.
A single site mutant of Bacillus subtilis with a streptovaricin-resistant RNA polymerase has been isolated; this mutation caused temperature-sensitive sporulation, but had no effect on vegetative growth. The mutant (ts710) temperature-sensitive period irreversibly affected the middle and late stages of sporulation. Mutant cells grown at the nonpermissive temperature exhibited abnormal serine protease accumulation, serine esterase accumulation, alkaline phosphatase accumulation, RNA polymerase template specificity changes, and pulse-labeled RNA synthesis profiles. The accumulation of metal protease was not affected at the nonpermissive temperature. Attempts to isolate single site mutants which were streptolydigin-resistant, and temperature-sensitive for sporulation, were unsuccessful.  相似文献   

16.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

17.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.  相似文献   

18.
19.
TsAF8 is a temperature-sensitive (TS) mutant of BHK21 cells that arrests at nonpermissive temperatures in the mid-G1 phase of the cell cycle. TsAmaR-1 is a TS for growth mutant of CHO cells with a Ts- and α-amanitin-resistant (AmaR) RNA polymerase II activity. Hybrid TsAmaR-1 x TsAF8 cell lines were constructed at permissive temperatures. Such hybrid cells did not grow at nonpermissive temperatures; the two TS mutations did not complement. Two different AmaR derivatives of TsAF8 were isolated. Each contained only AmaR polymerase II activity, indicating that this RNA polymerase II gene locus in TsAF8 is functionally hemizygous, as would be expected for a locus in which the recessive TsAF8 mutation had occurred. One of these AmaR isolates of TsAF8 had a partially reverted TS+ phenotype. Taken together these results suggest that the TS mutation in TsAF8 is in RNA polymerase II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号