首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive deformation due to villous motility or peristalsis may support the intestinal mucosa, stimulating intestinal epithelial proliferation under normal circumstances and restitution in injured and inflamed mucosa rich in tissue fibronectin. Cyclic strain enhances Caco-2 and IEC-6 intestinal epithelial cell migration across fibronectin via ERK. However, the upstream mediators of ERK activation are unknown. We investigated whether Src and FAK mediate strain-induced ERK phosphorylation and migration in human Caco-2 intestinal epithelial cells on fibronectin. Monolayers on tissue fibronectin-precoated membranes were subjected to an average 10% repetitive deformation at 10 cycles/min. Phosphorylation of Src-Tyr 418, FAK-Tyr 397-Tyr 576-Tyr 925, and ERK were significantly increased by deformation. The stimulation of wound closure by strain was prevented by Src blockade with PP2 (10 micromol/l) or specific short interfering (si)RNA. Src inhibition also prevented strain-induced FAK phosphorylation at Tyr 397 and Tyr 576 but not FAK-Tyr 925 or ERK phosphorylation. Reducing FAK by siRNA inhibited strain-induced ERK phosphorylation. Transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutants Y397F, Y576F-Y577F, and Y397F-Y576F-Y577F did not prevent the activation of ERK2 by cyclic strain, but a FAK mutant at the COOH terminal (Y925F) prevented the strain-induced activation of ERK2. Although the Y397F-Y576F-Y577F FAK construct exhibited less basal FAK-Tyr 925 phosphorylation under static conditions, it nevertheless exhibited increased FAK-Tyr 925 phosphorylation in response to strain. These results suggest that repetitive deformation stimulates intestinal epithelial motility across fibronectin in a manner that requires both Src activation and a novel Src-independent FAK-Tyr 925-dependent pathway that activates ERK. This pathway may be an important target for interventions to promote mucosal healing in settings of intestinal ileus or fasting.  相似文献   

2.
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. Such repetitive strain promotes intestinal epithelial migration across fibronectin in vitro, but signaling mediators for this are poorly understood. We hypothesized that integrin-linked kinase (ILK) mediates strain-stimulated migration in intestinal epithelial cells cultured on fibronectin. ILK kinase activity increased rapidly 5 min after strain induction in both Caco-2 and intestinal epithelial cell-6 (IEC-6) cells. Wound closure in response to strain was reduced in ILK small interfering RNA (siRNA)-transfected Caco-2 cell monolayers when compared with control siRNA-transfected Caco-2 cells. Pharmacological blockade of phosphatidylinositol-3 kinase (PI3K) or Src or reducing Src by siRNA prevented strain activation of ILK. ILK coimmunoprecipitated with focal adhesion kinase (FAK), and this association was decreased by mutation of FAK Tyr925 but not FAK Tyr397. Strain induction of FAK Tyr925 phosphorylation but not FAK Tyr397 or FAK Tyr576 phosphorylation was blocked in ILK siRNA-transfected cells. ILK-Src association was stimulated by strain and was blocked by the Src inhibitor PP2. Finally, ILK reduction by siRNA inhibited strain-induced phosphorylation of myosin light chain and Akt. These results suggest a strain-dependent signaling pathway in which ILK association with FAK and Src mediates the subsequent downstream strain-induced motogenic response and suggest that ILK induction by repetitive deformation may contribute to recovery from mucosal injury and restoration of the mucosal barrier in patients with prolonged ileus. ILK may therefore be an important target for intervention to maintain the mucosa in such patients.  相似文献   

3.
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.  相似文献   

4.
Extracellular matrix regulation of intestinal epithelial differentiation may affect development, differentiation during migration to villus tips, healing, inflammatory bowel disease, and malignant transformation. Cell culture studies of intestinal epithelial biology may also depend on the matrix substrate used. We evaluated matrix effects on differentiation and proliferation in human intestinal Caco-2 epithelial cells, a model for intestinal epithelial differentiation. Proliferation, brush border enzyme specific activity, and spreading were compared in cells cultured on tissue culture plastic with interstitial collagen I and the basement membrane constituents collagen IV and laminin. Each matrix significantly increased alkaline phosphatase, dipeptidyl peptidase, lactase, sucrase-isomaltase, and cell spreading in comparison to plastic. However, the basement membrane proteins collagen IV and laminin further promoted all four brush border enzymes but inhibited spreading compared to collagen I. Proliferation was most rapid on type I collagen and slowest on laminin and tissue culture plastic. Basement membrane matrix proteins may promote intestinal epithelial differentiation and inhibit proliferation compared with interstitial collagen I.  相似文献   

5.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

6.
Mechanical forces regulate lung maturation in the fetus by promoting type II epithelial differentiation. However, the cell surface receptors that transduce these mechanical cues into cellular responses remain largely unknown. When distal lung type II epithelial cells isolated from embryonic day 19 rat fetuses were cultured on flexible plates coated with laminin, fibronectin, vitronectin, collagen, or elastin and exposed to a level of mechanical strain (5%) similar to that observed in utero, transmembrane signaling responses were induced under all conditions, as measured by ERK activation. However, mechanical stress maximally increased expression of the type II cell differentiation marker surfactant protein C when cells were cultured on laminin substrates. Strain-induced alveolar epithelial differentiation was inhibited by interfering with cell binding to laminin using soluble laminin peptides (IKVIV or YIGSR) or blocking antibodies against integrin beta1, alpha3, or alpha6. Additional studies were carried out with substrates coated directly with different nonactivating anti-integrin antibodies. Blocking integrin beta1 and alpha6 binding sites inhibited both cell adhesion and differentiation, whereas inhibition of alpha3 prevented differentiation without altering cell attachment. These data demonstrate that various integrins contribute to mechanical control of type II lung epithelial cell differentiation on laminin substrates. However, they may act via distinct mechanisms, including some that are independent of their cell anchoring role.  相似文献   

7.
8.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

9.
Repetitive deformation like that engendered by peristalsis or villous motility stimulates intestinal epithelial proliferation on collagenous substrates and motility across fibronectin, each requiring ERK. We hypothesized that ERK acts differently at different intracellular sites. We stably transfected Caco‐2 cells with ERK decoy expression vectors that permit ERK activation but interfere with its downstream signaling. Targeting sequences constrained the decoy inside or outside the nucleus. We assayed proliferation by cell counting and migration by circular wound closure with or without 10% repetitive deformation at 10 cycles/min. Confocal microscopy confirmed localization of the fusion proteins. Inhibition of phosphorylation of cytoplasmic RSK or nuclear Elk confirmed functionality. Both the nuclear‐localized and cytosolic‐localized ERK decoys prevented deformation‐induced proliferation on collagen. Deformation‐induced migration on fibronectin was prevented by constraining the decoy in the nucleus but not in the cytosol. Like the nuclear‐localized ERK decoy, a Sef‐overexpressing adenovirus that sequesters ERK in the cytoplasm also blocked the motogenic and mitogenic effects of strain. Inhibiting RSK or reducing Elk ablated both the mitogenic and motogenic effects of strain. RSK isoform reduction revealed isoform specificity. These results suggest that ERK must translocate to the nucleus to stimulate cell motility while ERK must act in both the cytosol and the nucleus to stimulate proliferation in response to strain. Selectively targeting ERK within different subcellular compartments may modulate or replace physical force effects on the intestinal mucosa to maintain the intestinal mucosal barrier in settings when peristalsis or villous motility are altered and fibronectin is deposited into injured tissue. J. Cell. Biochem. 109: 711–725, 2010. Published in 2010 Wiley‐Liss, Inc.  相似文献   

10.
We investigated the effect of interleukin 6 (IL-6) on the migration of rabbit corneal epithelium in vitro and on the attachment of dissociated corneal epithelial cells to a fibronectin matrix. When corneal blocks were cultured with IL-6 for 24 hours, the length of the path of epithelial migration over exposed corneal stroma increased significantly (p less than 0.005 at the concentration of 10 ng/ml) in proportion to the concentrations of IL-6 (0.1-10.0 ng/ml). The addition of antiserum against fibronectin or of GRGDSP abolished the stimulatory effect of IL-6 on epithelial migration. When corneal epithelial cells were cultured with various concentrations of IL-6, suspended, and plated on wells coated with fibronectin (10 micrograms/ml), the number of cells attached to the wells increased in a dose-dependent manner. The presence of antibody against fibronectin or of GRGDSP during the attachment assay decreased the number of cells attached to the fibronectin matrix, regardless of the fact that the cells had been cultured with IL-6 or not. IL-6 stimulated the attachment of corneal epithelial cells to collagen type IV and to laminin matrices. However, the presence of GRGDSP did not affect the cell attachment to collagen type IV and to laminin. These findings strongly indicate that IL-6 stimulates epithelial migration in the cornea by a fibronectin-dependent mechanism, presumably the increased expression of fibronectin receptors.  相似文献   

11.
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.  相似文献   

12.
Previously, we have shown that the embryonic corneal epithelium is capable of interacting with exogenous collagen, laminin, and fibronectin in soluble form, each of which causes isolated epithelium cultured on Millipore filter to stop blebbing, reorganize the basal cytoskeleton, and flatten. Here we examine the involvement of endogenously derived extracellular matrix (ECM) molecules in the interaction of the basal epithelial cell surface with the added ECM molecules. We demonstrate here that the isolated avian corneal epithelium cultured on Millipore filter is capable of synthesizing collagens and laminin, but not fibronectin. To examine whether the epithelium is capable of interacting directly with exogenous ECM components or if there is the necessity for production of a linker molecule, epithelial protein synthesis was inhibited with cycloheximide (CHX). The blebbing epithelium in the presence of CHX was then confronted with soluble ECM molecules added to the medium under the filter; such epithelia are able to interact with, and flatten in response to, both collagen and laminin. However, such inhibited epithelia continue to bled in the presence of fibronectin. We next used l-azetidine-4-carboxylic acid (LACA) to interfere with collagen secretion. Epithelia exposed to LACA are still capable of interacting with collagen and laminin, but not fibronectin, indicating a dependence on collagen secretion. These results suggest that fibronectin requires a linker protein, probably collagen, to interact with the basal epithelial surface, whereas both collagen and laminin may interact directly with the cell surface to transform the basal cytoskeleton into the cortical mat typical of differentiating corneal epithelium in situ.  相似文献   

13.
The adrenal cortex undergoes constant dynamic structural changes, a key element in ensuring integrative functionality of the gland. Studies have shown that the cellular environment can modulate cell functions such as proliferation and steroid secretion. For example, 3-day treatment with angiotensin II promotes protein synthesis with a concomitant decrease in proliferation of glomerulosa cells, when cultured on fibronectin, but not on collagen IV or laminin. These effects involve close interaction between cytoskeleton-associated proteins and activation of p42/p44mapk and p38 MAPK pathways. On the other hand, adrenocorticotropin hormone (ACTH), which is clearly the most potent stimulus of fasciculata cells, induces specific modulation of targeted proteins, when cells are cultured on collagen IV, but not on fibronectin or laminin. In particular, ACTH treatment leads to increased expression of Seladin-1 and induces the relocalization of Seladin-1 from the cytoplasm to the nucleus, both in vivo and in culture conditions, in adult rats and in human fetal adrenal glands. As a whole, these results indicate that Seladin-1, together with collagen IV, is able to modulate ACTH responsiveness. Hence, Seladin-1 may participate in the regulation of steroidogenesis when localized in the cytoplasm, while conversely protecting cells against oxidative stress generated by intense ACTH stimulation when massively localized in the nucleus.  相似文献   

14.
Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-kappaB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-kappaB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-kappaB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin alpha2beta1 on collagen prevents flow-induced NF-kappaB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-kappaB activation, suggesting a novel therapeutic strategy for treating atherosclerosis.  相似文献   

15.
Adhesion of platelets to laminin in the absence of activation   总被引:9,自引:6,他引:3       下载免费PDF全文
The binding of platelets to components in the subendothelial matrix is an initial event in hemostasis and thrombosis. The glycoprotein components of the matrix are considered important in this interaction. Of these, collagen binds and activates platelets and induces their aggregation. In this study we demonstrate that substrate-bound laminin causes time- and concentration-dependent adherence of human platelets to the substrate. The binding of platelets to laminin was found to be similar in some respects, but different in others, to their binding to surfaces coated with fibronectin or collagen. The binding of platelets to laminin or fibronectin was not associated with their activation under conditions in which type I collagen activates the platelets as measured by [14C]serotonin secretion. Platelets bound to laminin and fibronectin differed in their appearance; they remained rounded on laminin whereas they flattened completely on fibronectin. Binding of platelets to fibronectin, but not laminin, is inhibited by a recently described peptide (Pierschbacher, M., and E. Ruoslahti, 1984, Nature (Lond.), 309:30-33) containing the cell-attachment tetrapeptide sequence of fibronectin, which suggests that separate receptors exist for laminin and fibronectin. These studies establish laminin as a platelet-binding protein and suggest that laminin can contribute to the adhesiveness of exposed tissue matrices to platelets. Since laminin and fibronectin do not activate platelets, whereas collagen does, and laminin differs from fibronectin in that it does not induce spreading of the attached platelets, all three proteins appear to confer different signals to the platelets. Some of these may be related to platelet functions other than those necessary for the formation of a hemostatic plug.  相似文献   

16.
The current study was designed to investigate whether the activities of TGC (total gelatinase and collagenase) as well as MMP‐9 (matrix metalloproteinase‐9, gelatinase B) secreted by the cultured fibroblasts and myoblasts were influenced by the specific extracellular substrates and by cyclic mechanical strain. Fibroblasts (Rat 2) and myoblasts (C2C12) were cultured with either fibronectin, laminin or collagen type I for 24 h and applied with or without a biaxial deformation at 1 Hz using the Flexcell FX‐4000 system. MMP‐9 activity was increased in fibroblasts when the cells were in contact with fibronectin and laminin, while in myoblasts, enhanced activity of the secreted enzyme was only observed when collagen was present. TGC activity expressed from myoblasts was increased in cells growing on all three types of extracellular proteins in response to the mechanical stimulation, but in fibroblasts, such an increase was only observed in cells grown on the laminin coating. In summary, our data demonstrate that the activities of MMP‐9 synthesized by fibroblasts tend to be regulated by the specific extracellular protein the cells are in contact with, whereas the gelatinolytic actions of proteases produced by myoblasts are more responsive to the mechanical deformation.  相似文献   

17.
We wished to determine whether hyaluronan would affect the attachment of epithelial cells to extracellular matrix proteins. Multiwell tissue culture plates were coated with human plasma fibronectin, laminin, or collagen type IV (0.01–10.0 μg/ml). Single-cell suspensions of rabbit corneal epithelial cells were placed in the wells, and after 45 minutes incubation the cells adhering to the matrix proteins were stained and counted. Cells attached to all three types of proteins. Preincubation of the matrix proteins with hyaluronan (0.1–1.0 mg/ml) significantly increased the number of cells attached to the fibronectin matrix, but it did not increase the numbers of cells attached to laminin or collagen type IV. Hyaluronidase inhibited this stimulatory effect. Glycosaminoglcyans other than hyaluronan (chondroitin sulfate, keratan sulfate, or heparan sulfate) failed to increase the numbers of attached cells. Treatment of the fibronectin matrix with monoclonal antibodies against the cell-binding domain of fibronectin (FN12–8 or FN30–8, 0.03–0.3 mg/ml, for 1 hour), before or after hyaluronan treatment, significantly decreased the numbers of attached cells. Monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal (FN9–1), however, significantly decreased the number of attached cells only when this antibody treatment preceded the hyaluronan treatment. Preincubation of the cells with hyaluronan had no effect; preincubation with GRGDSP (1 mg/ml), a synthetic peptide that blocks the cell surface receptor for fibronectin, significantly decreased cell attachment whether the fibronectin matrix was treated with hyaluronan or not. Further studies demonstrated that monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin prevented radiolabeled hyaluronan from binding to fibronectin; likewise, the isolated N-terminal fragment, coupled with Sepharose 4B, bound to hyaluronan in columns. We conclude that hyaluronan binds to a fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin and facilitates the attachment of epithelial cells. © 1994 wiley-Liss, Inc.  相似文献   

18.
Regulation of cell attachment and cell number by fibronectin and laminin   总被引:1,自引:0,他引:1  
We have examined the effect of laminin and fibronectin on the attachment and growth on type IV collagen of a line of mouse epithelial cells and a strain of adult human fibroblasts. Laminin stimulated attachment of the epidermal cells and fibronectin stimulated fibroblast attachment. At high concentrations (100 micrograms/ml), the attachment proteins altered the growth of cells in culture. The epidermal cells grew better in media containing fibronectin-free serum supplemented with laminin. Fibroblasts, on the other hand, grew best in media containing serum supplemented with fibronectin. These data suggest that laminin promotes epithelial cell growth whereas fibronectin promotes fibroblast growth. This observation was confirmed when these cells were cocultured in the presence of the attachment proteins or of their respective antibodies. The mouse epidermal cells grew best when laminin was added to cocultures of fibroblasts and epithelial cells. Fibroblasts grew best in the presence of antibody to laminin and poorly in the presence of antibody to fibronectin. Thus, fibronectin and laminin may participate in the regulation of cell populations in vivo and may be involved in epithelial-mesenchymal interactions.  相似文献   

19.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

20.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号