首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have determined the DNA sequence of the two adjacent genes for the alpha and beta chains of tryptophan synthase in Pseudomonas aeruginosa, along with 34 5'-flanking and 799 3'-flanking base pairs. The gene order is trpBA as predicted from earlier genetic studies, and the two cistrons overlap by 4 bp; a ribosome binding site for the second gene is evident in the coding sequence of the first gene. We have also determined the location of three large deletions eliminating portions of each gene. A detailed comparison of the deduced P. aeruginosa amino acid sequence with those published for E. coli, Bacillus subtilis, and Saccharomyces cerevisiae shows much similarity throughout the beta and most of the alpha subunit. Most of the residues implicated by chemical modification or mutation as being critical for enzymatic activity are conserved, along with many others, suggesting that three-dimensional structure has remained largely constant during evolution. We also report the construction of a recombinant plasmid that overproduces a slightly modified alpha subunit from P. aeruginosa that can form a functionally effective multimer with normal E. coli beta 2 subunit in vivo.   相似文献   

2.
Acetohydroxyacid synthase (AHAS), the first enzyme unique to the biosynthesis of isoleucine, leucine, and valine, is the target enzyme for several classes of herbicides. The AHAS gene from Arabidopsis thaliana, including the chloroplast transit peptide, was cloned into the bacterial expression plasmid pKK233-2. The resulting plasmid was used to transform an AHAS-deficient Escherichia coli strain MF2000. The growth of the MF2000 strain of E. coli was complemented by the functional expression of the Arabidopsis AHAS. The AHAS protein was processed to a molecular mass of 65 kilodaltons that was similar to the mature protein isolated from Arabidopsis seedlings. The AHAS activity extracted from the transformed E. coli cells was inhibited by imidazolinone and sulfonylurea herbicides. AHAS activity extracted from Arabidopsis is inhibited by valine and leucine; however, this activity was insensitive to these feedback inhibitors when extracted from the transformed E. coli.  相似文献   

3.
4.
H M Eun  E W Miles 《Biochemistry》1984,23(26):6484-6491
The alpha subunit of tryptophan synthase from Escherichia coli is inactivated by phenylglyoxal and by (p-hydroxyphenyl)glyoxal. The use of these chemical modification reagents to determine the role of arginyl residues in the alpha subunit of tryptophan synthase has been complicated by our finding that these reagents react with sulfhydryl groups of the alpha subunit, as well as with arginyl residues. Analyses of the data for incorporation of phenyl[2-14C]glyoxal, for inactivation, and for sulfhydryl modification in the presence and absence of indole-3-glycerol phosphate indicate that two sulfhydryl groups and one arginine are essential for the activity. Our finding that the substrate protects the single essential arginyl residue but not the two sulfhydryl groups is consistent with the observed kinetics of partial protection by substrate or by a substrate analogue, indole-3-propanol phosphate. In contrast to phenylglyoxal, (p-hydroxyphenyl)glyoxal modifies two to three sulhydryl groups that are not protected by indole-3-glycerol phosphate and modifies none of the arginyl residues that are modified by phenylglyoxal.  相似文献   

5.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

6.
7.
The reactive surface structures of alpha subunits of tryptophan synthase from Escherichia coli, Shigella dysenteriae, Salmonella typhimurium, Aerobacter aerogenes, and Serratia marcescens were compared by measuring (i) their reactivities in micro-complement-fixation assays with antibodies directed specifically to E. coli wild-type alpha subunit, (ii) their reactivities in enzyme neutralization assays with the same antibodies, and (iii) their binding affinities for tryptophan synthase beta(2) subunits. The enzymes from the four heterologous species cross-reacted in the microcomplement-fixation assays with the anti-E. coli alpha subunit antibodies, each to a different degree. However, neutralization titers of the antibodies reacting with the various alpha subunits were comparatively similar, and the beta(2) subunit-binding and -stimulating abilities of the alpha subunits were even more closely alike. The results suggested that the tertiary structure of the beta(2) subunit-binding site of the alpha subunit has been conserved, relative to the rest of the molecule, during the evolutionary divergence of the species of Enterobacteriaceae.  相似文献   

8.
Our studies, which are aimed at understanding the catalytic mechanism of the alpha subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to explore the functional roles of aspartic acid 60, tyrosine 175, and glycine 211. These residues are located close to the substrate binding site of the alpha subunit in the three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Our finding that replacement of aspartic acid 60 by asparagine, alanine, or tyrosine results in complete loss of activity in the reaction catalyzed by the alpha subunit supports a catalytic role for aspartic acid 60. Since the mutant form with glutamic acid at position 60 has partial activity, glutamic acid 60 may serve as an alternative catalytic base. The mutant form in which tyrosine 175 is replaced by phenylalanine has substantial activity; thus the phenolic hydroxyl of tyrosine 175 is not essential for catalysis or substrate binding. Yanofsky and colleagues have identified many missense mutant forms of the alpha subunit of tryptophan synthase from Escherichia coli. Two of these inactive mutant forms had either tyrosine 175 replaced by cysteine or glycine 211 replaced by glutamic acid. Surprisingly, a second-site revertant which contained both of these amino acid changes was partially active. These results indicated that the second mutation must compensate in some way for the first. We now extend the studies of the effects of specific amino acid replacements at positions 175 and 211 by two techniques: 1) characterization of several mutant forms of the alpha subunit from S. typhimurium prepared by site-directed mutagenesis and 2) computer graphics modeling of the substrate binding site of the alpha subunit using the x-ray coordinates of the wild type alpha 2 beta 2 complex from S. typhimurium. We conclude that the restoration of alpha subunit activity in the doubly altered second-site revertant results from restoration of the proper geometry of the substrate binding site.  相似文献   

9.
Guanidine hydrochloride-induced denaturation and thermal denaturation of three kinds of tryptophan synthase alpha subunit have been compared by circular dichroism measurements. The three alpha subunits are from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid in which the C-terminal domain comes from E. coli (alpha-2 domain) and the N-terminal domain comes from S. typhimurium (alpha-1 domain). Analysis of denaturation by guanidine hydrochloride at 25 degrees C showed that the alpha-2 domain of S. typhimurium was more stable than the alpha-2 domain of E. coli, but the alpha-1 domain of S. typhimurium was less stable than the alpha-1 domain of the E. coli protein; overall, the hybrid protein was slightly less stable than the two original proteins. It is concluded that the stability to guanidine hydrochloride denaturation of each of the domains of the interspecies hybrid is similar to the stability of the domain of the species from which it originated. The E. coli protein was more stable to thermal denaturation than the other proteins near the denaturation temperature, but the order of their thermal stability was reversed at 25 degrees C and coincided with that obtained from guanidine hydrochloride-induced denaturation.  相似文献   

10.
Pyridoxal 5'-phosphate-dependent tryptophan synthase catalyzes the last two reactions of tryptophan biosynthesis, and is comprised of two distinct subunits, alpha and beta. TktrpA and TktrpB, which encode the alpha subunit and beta subunit of tryptophan synthase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, were independently expressed in Escherichia coli and their protein products were purified. Tryptophan synthase complex (Tk-TS complex), obtained by heat treatment of a mixture of the cell-free extracts containing each subunit, was also purified. Gel-filtration chromatography revealed that Tk-TrpA was a monomer (alpha), Tk-TrpB was a dimer (beta2), and Tk-TS complex was a tetramer (alpha2 beta2). The Tk-TS complex catalyzed the overall alphabeta reaction with a specific activity of 110 micromol Trp per micromol active site per min under its optimal conditions (80 degrees C, pH 8.5). Individual activity of the alpha and beta reactions of the Tk-TS complex were 8.5 micromol indole per micromol active site per min (70 degrees C, pH 7.0) and 119 micromol Trp per micromol active site per min (90 degrees C, pH 7.0), respectively. The low activity of the alpha reaction of the Tk-TS complex indicated that turnover of the beta reaction, namely the consumption of indole, was necessary for efficient progression of the alpha reaction. The alpha and beta reaction activities of independently purified Tk-TrpA and Tk-TrpB were 10-fold lower than the respective activities detected from the Tk-TS complex, indicating that during heat treatment, each subunit was necessary for the other to obtain a proper conformation for high enzyme activity. Tk-TrpA showed only trace activities at all temperatures examined (40-85 degrees C). Tk-TrpB also displayed low levels of activity at temperatures below 70 degrees C. However, Tk-TrpB activity increased at temperatures above 70 degrees C, and eventually at 100 degrees C, reached an equivalent level of activity with the beta reaction activity of Tk-TS complex. Taking into account the results of circular dichroism analyses of the three enzymes, a model is proposed which explains the relationship between structure and activity of the alpha and beta subunits with changes in temperature. This is the first report of an archaeal tryptophan synthase, and the first biochemical analysis of a thermostable tryptophan synthase at high temperature.  相似文献   

11.
大肠杆菌trpBA基因的克隆表达   总被引:1,自引:0,他引:1  
目的:提高大肠杆菌中色氨酸合成酶的表达量和表达活性。方法:利用PCR方法从大肠杆菌K-12的基因组中直接克隆出紧密连锁trpB和trpA基因(简称trpBA),并将其连接到原核表达载体pet22b( )中,得到重组质粒pet22b( )-trp-BA,转化大肠杆菌BL21,IPTG诱导重组蛋白表达,表达产物经SDS-PAGE分析并用比色法测定其活性。结果:凝胶电泳可见PCR扩增产物大小约为2kb,SDS-PAGE鉴定目的蛋白的Mr分别约为29000和44000,色氨酸合成酶α、β亚基分别得到了高效表达,色氨酸合成酶活性提高到对照菌的3.7倍。结论:成功构建了重组质粒pet22b( )-trpBA,色氨酸合成酶的表达量和表达活性在大肠杆菌中得到了提高,为高产色氨酸基因工程菌的构建奠定基础。  相似文献   

12.
A plasmid was constructed that carried the ilvG and ilvM genes and the associated promoter and leader regions derived from the K-12 strain of Escherichia coli. The ilvG gene contained a + 1 frameshift mutation that enabled the plasmid to specify acetohydroxyacid synthase II. The plasmid was modified by deletions in the terminus of and within the ilvM gene and by insertions into the ilvM gene. The effects of these modifications on the phenotypes of the plasmids were examined in a host strain that lacked all three isozymes of acetohydroxyacid synthase. Most of the ilvM mutant plasmids so obtained permitted growth of the host strain in the absence of isoleucine but not in the absence of valine. Growth in the presence of valine, however, was very slow. No significant acetohydroxyacid synthase activity could be detected even when the cells were grown in a valine-supplemented minimal medium. It thus appears that, at most, only a very low level of acetohydroxyacid synthase activity occurred with ilvG in the absence of ilvM and that low activity was more effective for acetohydroxy butyrate formation than for acetolactate formation. The ilvM gene product could be formed under the control of the lac promoter in the presence of a plasmid that carried an in-frame gene fusion between lacZ and the downstream portion of ilvG. Extracts from the host strain that contained such an IlvG(-)-IlvM+ plasmid could be combined with extracts from cells that contained one of the IlvG+-IlvM- plasmids to yield acetohydroxyacid synthase activity. Thus, the ilvM and ilvG genes could be expressed independently of each other.  相似文献   

13.
S A Ahmed  B Martin  E W Miles 《Biochemistry》1986,25(15):4233-4240
Although tryptophan synthase catalyzes a number of pyridoxal phosphate dependent beta-elimination and beta-replacement reactions that are also catalyzed by tryptophanase, a principal and puzzling difference between the two enzymes lies in the apparent inability of tryptophan synthase to catalyze beta-elimination of indole from L-tryptophan. We now demonstrate for the first time that the beta 2 subunit and the alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli and from Salmonella typhimurium do catalyze a slow beta-elimination reaction with L-tryptophan to produce indole, pyruvate, and ammonia. The rate of the reaction is about 10-fold higher in the presence of the alpha subunit. The rate of indole production is increased about 4-fold when the aminoacrylate produced is converted to S-(hydroxyethyl)-L-cysteine by a coupled beta-replacement reaction with beta-mercaptoethanol. The rate of L-tryptophan cleavage is also increased when the indole produced is removed by extraction with toluene or by condensation with D-glyceraldehyde 3-phosphate to form indole-3-glycerol phosphate in a reaction catalyzed by the alpha subunit of tryptophan synthase. The amount of L-tryptophan cleavage is greatest in the presence of both beta-mercaptoethanol and D-glyceraldehyde 3-phosphate, which cause the removal of both products of cleavage. The cleavage reaction is not due to contaminating tryptophanase since the activity is not inhibited by (3R)-2,3-dihydro-L-tryptophan, a specific inhibitor of tryptophanase, but is inhibited by (3S)-2,3-dihydro-L-tryptophan, a specific inhibitor of tryptophan synthase. The cleavage reaction is also inhibited by D-tryptophan, the product of a slow racemization reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have obtained a complete set of 20 variants of the alpha subunit of tryptophan synthase of Escherichia coli at position 49 in order to extend our previous studies on the effects of single amino acid replacements at position 49 on structure and function. Thirteen mutant alpha subunits have been newly constructed by site-directed mutagenesis using oligonucleotides. Six mutants were available from previous studies. We find that the wild type and all of the mutant alpha subunits form alpha 2 beta 2 complexes with the beta 2 subunit of tryptophan synthase with similar association constants and similarly stimulate the activity of the beta 2 subunit in the synthesis of L-tryptophan from L-serine and indole. Thus none of the changes at position 49 produces a change in the conformation of the alpha subunit which significantly interferes with normal subunit interaction. However, the 19 mutant alpha 2 beta 2 complexes are completely devoid of activity in reactions normally catalyzed by the active site of the alpha subunit. This is the first time that these several activities have been measured with a series of highly purified alpha subunits altered by mutation at a single site. Our finding that the mutant in which glutamic acid 49 is substituted by aspartic acid is totally devoid of alpha activity is especially significant and is strong evidence that glutamic acid 49 is an essential catalytic base in the reaction catalyzed by the alpha subunit. This result is consistent with the results of previous genetic studies, with evolutionary comparisons using sequence analysis, and with recent results from x-ray crystallography of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium.  相似文献   

15.
16.
W Ito  Y Kurosawa 《Gene》1992,118(1):87-91
For unknown reasons, levels of expression of foreign genes inserted into expression vectors in Escherichia coli have frequently been undetectable. The most critical step in the successful production of foreign proteins seems to be the initiation of translation. Since most prokaryotic genes are transcribed in a polycistronic form, we have devised a new prokaryotic expression system utilizing dicistronic gene organization. Downstream from a strong promoter and the gene encoding glutathione S-transferase from Schistosoma japonicum, various foreign genes were connected via a ribosome-binding site, a stop codon and a start codon. The VH domain of an immunoglobulin fused to the alpha subunit of tryptophan synthase, FK506-binding protein, cyclophilin, and a domain of a major histocompatibility complex antigen were successfully produced in E. coli as discrete polypeptides by this method.  相似文献   

17.
Inhibition studies and affinity chromatography indicate that derivatives of tryptophanol phosphate are suitable ligands for the affinity chromatography of tryptophan synthase. A phenyl group on the spacer arm strengthens the interaction of immobilized tryptophanol phosphate with the enzyme. The alpha 2 beta 2 complex specifically requires the presence of 0.3--0.5 M phosphate ions for binding. The alpha subunit binds in dilute Tris buffer, but its binding is also enhanced by the presence of phosphate ions. The beta 2 subunit binds unspecifically but strongly to the affinity material and to a variety of other immobilized hydrophobic ligands. Binding studies with suspensions of affinity material show that the alpha subunit interacts rapidly and reversibly. Indoleglycerol phosphate and indolepropanol phosphate release bound alpha 2 beta 2 complex and alpha subunit in a competitive manner, indicating that the interaction occurs biospecifically, i.e. via the active site of alpha subunit. L-Serine is a non-competitive inhibitor of binding. These results are discussed with regard to the composite-active-site hypothesis [T. E. Creighton (1970) Eur. J. Biochem, 13, 1--10]. Both the alpha subunit and the alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli can be obtained with high yields and in homogenous form by absorption to the affinity material from partially purified preparations. Elution is achieved with linear gradients either of indolepropanol phosphate or of indoleglycerol phosphate or, in the case of the complex, of L-serine. At the low concentrations of the complex found in crude extracts of wild-type E. coli cells, the unexpectedly high affinity of the beta 2 subunit for hydrophobic ligands leads to partial dissociation of the complex.  相似文献   

18.
A gene library of Bordetella pertussis DNA was constructed in Escherichia coli using the broad-host-range cosmid vector pLAFR1. The average insert size was 24.9 kb. From 500 members of the gene library, clones were identified which complemented trpE, glnA and Thr- mutations in E. coli but none which complemented trpD, trpC, trpB, trpA, proA or Leu- mutations. Four clones were identified which complemented trpE in E. coli. Anthranilate synthase activity was detected in a trpE strain only when it harboured a plasmid from one of these clones; activity was repressed when tryptophan was included in the growth medium. Two clones were identified which complemented glnA of E. coli. A recombinant plasmid from one of these clones also restored some of the nitrogen acquisition functions of glnG and glnL in E. coli. Expression of several B. pertussis virulence-associated products (haemolysin, heat-labile toxin, adenylate cyclase, filamentous haemagglutinin, and the cell-envelope polypeptide of Mr 30,000) was not detected in 500 independent clones. However, by transferring the recombinant plasmids to a mutant of B. pertussis deficient in haemolysin and adenylate cyclase, a plasmid was identified which restored both these activities.  相似文献   

19.
芝田硫化叶菌新型α-淀粉酶基因在大肠杆菌的克隆和表达   总被引:5,自引:0,他引:5  
刘莉  陈炜  金城 《微生物学报》2000,40(3):323-326
A novel α-amylase gene was amplified from Sulfolobus shibatae by using PCR technique.The amplified 1.7kb DNA fragment was inserted into an expression vector pBV220 to yield the recombinant plasmid pSBAM. The novel α-amylase gene in pSBAM was expressed in E. coli. The production of the novel α-amylase activity reached over 8 units/100mL of the culture. The molecular weight of this enzyme was about 61kD by SDS-PAGE. The expressed novel α-amylase protein in E.coli DHSα accounted for about 20 % of the total protein in the recombinant cell. The cooperative action of the novel α-amylase and the maltooligosyltrehalose synthase from Sulfolobus shibatae was investigated and trehalose was detected by using HPLC analysis when using amylose and partial starch hydrolysates as substrates.  相似文献   

20.
To obtain high levels of expression of the free alpha and beta subunits of tryptophan synthase from Salmonella typhimurium, we have used two plasmids (pStrpA and pStrpB) that carry the genes encoding the alpha and beta subunits, respectively. The expression of each plasmid in Escherichia coli CB149 results in overproduction of each subunit. We also report new and efficient methods for purifying the individual alpha and beta subunits. Microcrystals of the beta subunit are obtained by addition of polyethylene glycol 8000 and spermine to crude bacterial extracts. This crystallization procedure is similar to methods used previously to grow crystals of the S. typhimurium tryptophan synthase alpha 2 beta 2 complex for X-ray crystallography and to purify this complex by crystallization from bacterial extracts. The results suggest that purification by crystallization may be useful for other overexpressed enzymes and multienzymes complexes. Purification of the alpha subunit utilizes ammonium sulfate fractionation, chromatography on diethylaminoethyl-Sephacel, and high-performance liquid chromatography on a Mono Q column. The purified alpha and beta subunits are more than 95% pure by the criterion of sodium dodecyl sulfate gel electrophoresis. The procedures developed can be applied to the expression and purification of mutant forms of the separate alpha and beta subunits. The purified alpha and beta subunits provide useful materials for studies of subunit association and for investigations of other properties of the separate subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号