首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroxyl (HNO) has received recent and significant interest due to its novel and potentially important pharmacology. However, the chemical/biochemical mechanism(s) responsible for its biological activity remain to be established. Some of the most important biological targets for HNO are thiols and thiol proteins. Consistent with this, it was recently reported that HNO inhibits the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein with a catalytically important cysteine thiol at its active site. Interestingly, it was reported that intracellular GAPDH inhibition occurred without significantly altering the cellular thiol redox status of glutathione. Herein, the nature of this reaction specificity was examined. HNO is found to irreversibly inhibit GAPDH in a manner that can be protected against by one of its substrates, glyceraldehyde-3-phosphate (G-3-P). These results are consistent with the idea that HNO has the ability to react with and oxidize a variety of intracellular thiols and the ease or facility of cellular re-reduction of the thiol targets can determine the target specificity.  相似文献   

2.
Once a virtually unknown nitrogen oxide, nitroxyl (HNO) has emerged as a potential pharmacological agent. Recent advances in the understanding of the chemistry of HNO has led to the an understanding of HNO biochemistry which is vastly different from the known chemistry and biochemistry of nitric oxide (NO), the one-electron oxidation product of HNO. The cardiovascular roles of NO have been extensively studied, as NO is a key modulator of vascular tone and is involved in a number of vascular related pathologies. HNO displays unique cardiovascular properties and has been shown to have positive lusitropic and ionotropic effects in failing hearts without a chronotropic effect. Additionally, HNO causes a release of CGRP and modulates calcium channels such as ryanodine receptors. HNO has shown beneficial effects in ischemia reperfusion injury, as HNO treatment before ischemia-reperfusion reduces infarct size. In addition to the cardiovascular effects observed, HNO has shown initial promise in the realm of cancer therapy. HNO has been demonstrated to inhibit GAPDH, a key glycolytic enzyme. Due to the Warburg effect, inhibiting glycolysis is an attractive target for inhibiting tumor proliferation. Indeed, HNO has recently been shown to inhibit tumor proliferation in mouse xenografts. Additionally, HNO inhibits tumor angiogenesis and induces cancer cell apoptosis. The effects seen with HNO donors are quite different from NO donors and in some cases are opposite. The chemical nature of HNO explains how HNO and NO, although closely chemically related, act so differently in biochemical systems. This also gives insight into the potential molecular motifs that may be reactive towards HNO and opens up a novel field of pharmacological development.  相似文献   

3.
We previously showed that the one-electron reduction product of nitric oxide (NO), nitroxyl (HNO), irreversibly inhibits the proteolytic activity of the model cysteine protease papain. This result led us to investigate the differential effects of the nitrogen oxides, such as nitroxyl (HNO), NO, and in situ-generated peroxynitrite on cysteine modification-sensitive cellular proteolytic enzymes. We used Angeli's salt, diethylaminenonoate (DEA/NO), and 3-morpholinosydnoniminehydrochloride (SIN-1), as donors of HNO, NO, and peroxynitrite, respectively. In this study we evaluated their inhibitory activities on the lysosomal mammalian papain homologue cathepsin B and on the cytosolic 26S proteasome in THP-1 monocyte/macrophages after LPS activation or TPA differentiation. HNO-generating Angeli's salt caused a concentration-dependent (62 +/- 4% at 316 muM) inhibition of the 26S proteasome activity, resulting in accumulation of protein-bound polyubiquitinylated proteins in LPS-activated cells, whereas neither DEA/NO nor SIN-1 showed any effect. Angeli's salt, but not DEA/NO or SIN-1, also caused (94 +/- 2% at 316 muM) inhibition of lysosomal cathepsin B activity in LPS-activated cells. Induction of macrophage differentiation did not significantly alter the inhibitory effect of HNO on lysosomal cathepsin B activity, but protected the proteasome from HNO-induced inhibition. The protection awarded by macrophage differentiation was associated with induction of the GSH synthesis rate-limiting enzyme gamma-glutamylcysteine synthetase, as well as with increased intracellular GSH. In conclusion, HNO abrogates both lysosomal and cytosolic proteolysis in THP-1 cells. Macrophage differentiation, associated with upregulation of antioxidant defenses such as increased cellular GSH, does not protect the lysosomal cysteine protease cathepsin B from inhibition.  相似文献   

4.
Nitroxyl (HNO) exhibits unique pharmacological properties that often oppose those of nitric oxide (NO), in part due to differences in reactivity toward thiols. Prior investigations suggested that the end products arising from the association of HNO with thiols were condition-dependent, but were inconclusive as to product identity. We therefore used HPLC techniques to examine the chemistry of HNO with glutathione (GSH) in detail. Under biological conditions, exposure to HNO donors converted GSH to both the sulfinamide [GSONH2] and the oxidized thiol (GSSG). Higher thiol concentrations generally favored a higher GSSG ratio, suggesting that the products resulted from competitive consumption of a single intermediate (GSNHOH). Formation of GSONH2 was not observed with other nitrogen oxides (NO, N2O3, NO2, or ONOO(-)),indicating that it is a unique product of the reaction of HNO with thiols. The HPLC assay was able to detect submicromolar concentrations of GSONH2. Detection of GSONH2 was then used as a marker for HNO production from several proposed biological pathways, including thiol-mediated decomposition of S-nitrosothiols and peroxidase-driven oxidation of hydroxylamine (an end product of the reaction between GSH and HNO) and NG-hydroxy-l-arginine (an NO synthase intermediate). These data indicate that free HNO can be biosynthesized and thus may function as an endogenous signaling agent that is regulated by GSH content.  相似文献   

5.
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.  相似文献   

6.
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1–10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy.  相似文献   

7.
Nitrogen oxides are endogenously produced signaling/effector molecules that have the potential to both cause and ameliorate oxidative stress. Whether nitrogen oxides behave as oxidants or antioxidants is dependent on many factors including the cellular environment, the concentration, and the presence of other reactive species. To date, the nitrogen oxide nitroxyl (HNO) has only been reported to possess prooxidant properties. However, some of its chemical properties would predict that it could also serve as an antioxidant. In this study, the possible antioxidant actions of HNO were examined using the yeast Saccharomyces cerevisiae model system. The effect of HNO on membrane lipid peroxidation was examined and HNO was determined to act solely as an antioxidant in this system. In the presence of glutathione, a thiol-containing peptide that scavenges HNO, the antioxidant action was decreased. In addition, the antioxidant properties of HNO were not due to the conversion of HNO to NO. These results were also confirmed with in vitro assays of oxidative stress. Thus, HNO has the potential to preserve lipid membrane integrity by its antioxidant actions.  相似文献   

8.
9.
HNO is genotoxic but its mechanism is not well understood. There are many possible mechanisms by which HNO can attack DNA. Since HNO is electrophilic, it may react with exocyclic amine groups on DNA bases and through a series of subsequent reactions form a deaminated product. Alternatively, HNO may induce radical chemistry through O(2)-dependent (or possibly O(2)-independent) chemistry. In cell free systems, experiments have shown that HNO does react with DNA, resulting in base oxidation and strand cleavage. In this study, we used a whole-cell system in the yeast Saccharomyces cerevisiae to study the mechanism of HNO induced DNA damage with Angeli's salt as HNO donor. The yeast DEL assay provided a measure of intrachromosomal recombination leading to DNA deletions. We also examined interchromosomal recombination leading to genomic rearrangements and used the canavanine (CAN) assay to study induction of forward point mutations. HNO was a potent inducer of DNA deletions and recombination but it was negative for induction of point mutations. This suggests that HNO causes DNA strand breaks rather than base damage. Genotoxicity was observed under aerobic and anaerobic conditions and NAC protected against HNO induced DNA deletions. Since HNO is genotoxic under anaerobic conditions, NAC probably protected against radicals generated by HNO independent of oxygen.  相似文献   

10.
Cardiac sarcolemmal ATP-sensitive K+ (K(ATP)) channels, composed of Kir6.2 and SUR2A subunits, are regulated by intracellular ATP and they couple the metabolic status of the cell with the membrane excitability. On the basis of previous studies, we have suggested that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) may be a part of the sarcolemmal K(ATP)-channel protein complex. A polypeptide of approximately 42 kDa was immunoprecipitated with an anti-SUR2A antibody from guinea-pig cardiac membrane fraction and identified as GAPDH. Immunoprecipitation/western blotting analysis with anti-Kir6.2, anti-SUR2A and anti-GAPDH antibodies showed that GAPDH is a part of the sarcolemmal K(ATP)-channel protein complex in vivo. Further studies with immunoprecipitation/western blotting and the membrane yeast two-hybrid system showed that GAPDH associates physically with the Kir6.2 but not the SUR2A subunit. Patch-clamp electrophysiology showed that GAPDH regulates K(ATP)-channel activity irrespective of high intracellular ATP, by producing 1,3-bisphosphoglycerate, a K(ATP)-channel opener. These results suggest that GAPDH is an integral part of the sarcolemmal K(ATP)-channel protein complex, where it couples glycolysis with the K(ATP)-channel activity.  相似文献   

11.
Abstract— Neurotoxic hexacarbon compounds 2,5-hexanedione (2,5-HD) and methyl n-butyl ketone (M n BK) inhibit crystalline and endogenous CNS and PNS glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Preincubation of the enzyme with the toxin was necessary for inhibition. The enzyme activity of GAPDH was preserved by the addition of dithiothreitol in the presence of either neurotoxin. By contrast, lactate dehydrogenase (LDH) activity was not inhibited by these neurotoxic chemicals. Neurologically inactive compounds 1,6-hexanediol and acetone failed to inhibit GAPDH. The present data indicate that 2,5-HD and M "BK block energy metabolism by inhibiting glycolysis at the site of GAPDH. These observations may account for the known failure of GAPDH-dependent axonal transport and the axonal degeneration which occurs in hexacarbon neuropathy.  相似文献   

12.
Nitroxyl (HNO) donors exhibit promising pharmacological characteristics for treatment of cardiovascular disorders, cancer, and alcoholism. However, whether HNO also serves as an endogenous signaling agent is currently unknown, largely because of the inability to selectively and sensitively detect HNO in a cellular environment. Although a number of methods to detect HNO have been developed recently, sensitivity and selectivity against other nitrogen oxides or biological reductants remain problematic. To improve selectivity, the electrophilic nature of HNO has been harnessed to generate modifications of thiols and phosphines that are unique to HNO, especially compared to nitric oxide (NO). Given high bioavailability, glutathione (GSH) is expected to be a major target of HNO. As a result, the putative selective product glutathione sulfinamide (GS(O)NH2) may serve as a high-yield biomarker of HNO production. In this work, the formation of GS(O)NH2 after exposure to HNO donors was investigated. Fluorescent labeling followed by separation and detection using capillary zone electrophoresis with laser-induced fluorescence allowed quantitation of GS(O)NH2 with nanomolar sensitivity, even in the presence of GSH and derivatives. Formation of GS(O)NH2 was found to occur exclusively upon exposure of GSH to HNO donors, thus confirming selectivity. GS(O)NH2 was detected in the lysate of cells treated with low-micromolar concentrations of HNO donors, verifying that this species has sufficient stability to server as a biomarker of HNO. Additionally, the concentration-dependent formation of GS(O)NH2 in cells treated with an HNO donor suggests that the concentration of GS(O)NH2 can be correlated to intracellular levels of HNO.  相似文献   

13.
Nitroxyl (HNO) possesses unique and potentially important biological/physiological activity that is currently mechanistically ill-defined. Previous work has shown that the likely biological targets for HNO are thiol proteins, oxidized metalloproteins (i.e. ferric heme proteins) and, most likely, selenoproteins. Interestingly, these are the same classes of proteins that interact with H2O2. In fact, these classes of proteins not only react with H2O2, and thus potentially responsible for the signaling actions of H2O2, but are also responsible for the degradation of H2O2. Therefore, it is not unreasonable to speculate that HNO can affect H2O2 degradation by interacting with H2O2-degrading proteins possibly leading to an increase in H2O2-mediated signaling. Moreover, considering the commonality between HNO and H2O2 biological targets, it also seems likely that HNO-mediated signaling can also be due to reactivity at otherwise H2O2-reactive sites. Herein, it is found that HNO does indeed inhibit H2O2 degradation via inhibition of H2O2-metaboilizing proteins. Also, it is found that in a system known to be regulated by H2O2 (T cell activation), HNO behaves similarly to H2O2, indicating that HNO- and H2O2-signaling may be similar and/or intimately related.  相似文献   

14.
15.
The inhibition of glycolysis by 2,3-dinitrilo-1,4-dithia-9,10-antraquinone (DDA) in Ehrlich ascites carcinoma (EAC) cells as well as in the investigated respiratory and fermentative strains of yeasts was found to be the result of inactivation of thiol enzymes of this pathway. Increasing concentration of DDA caused, in EAC cells, marked inhibition of hexokinase (HK), phosphofructokinase (PFK) and practically total inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). These three enzymes, as well as alcohol dehydrogenase (ADH) were also inactivated by DDA in yeasts. DDA inhibited the biosynthetic processes as measured by following the rate of [14C]adenine and [14C)]valine incorporation into TCA-precipitable fractions proportionally to the degree of glucose consumption by EAC or the yeast cells.  相似文献   

16.
When Toxoplasma gondii egresses from the host cell, glyceraldehyde‐3‐phosphate dehydrogenase 1 (GAPDH1), which is primary a glycolysis enzyme but actually a quintessential multifunctional protein, translocates to the unique cortical membrane skeleton. Here, we report the 2.25 Å resolution crystal structure of the GAPDH1 holoenzyme in a quaternary complex providing the basis for the molecular dissection of GAPDH1 structure–function relationships Knockdown of GAPDH1 expression and catalytic site disruption validate the essentiality of GAPDH1 in intracellular replication but we confirmed that glycolysis is not strictly essential. We identify, for the first time, S‐loop phosphorylation as a novel, critical regulator of enzymatic activity that is consistent with the notion that the S‐loop is critical for cofactor binding, allosteric activation and oligomerization. We show that neither enzymatic activity nor phosphorylation state correlate with the ability to translocate to the cortex. However, we demonstrate that association of GAPDH1 with the cortex is mediated by the N‐terminus, likely palmitoylation. Overall, glycolysis and cortical translocation are functionally decoupled by post‐translational modifications.  相似文献   

17.
Reduced glutathione (GSH) and N-acetylcysteine (NAC), but not other antioxidative or reducing agents, were found to inhibit cell death, both apoptosis and necrosis, induced by hypoxia in naive and nerve growth factor-differentiated PC12 cells. The level of intracellular total GSH decreased time-dependently during hypoxia, but exogenously added GSH prevented such a decrease in GSH. Pretreatment of cells with exogenous GSH or NAC resulted in inhibition of both neutral sphingomyelinase (SMase) activation and ceramide formation during hypoxia. In the in vitro assay system, neutral SMase activity was inhibited dose-dependently by GSH and NAC. Activation of caspase-3 induced by hypoxia was also inhibited by either GSH or NAC. NAC but not GSH inhibited caspase-3 activation induced by C2-ceramide. These results suggest that GSH protects cells from hypoxic injury by direct inhibition of neutral SMase activity and ceramide formation, resulting in inhibition of caspase-3 activation, and that NAC exerts an additional inhibitory effect(s) downstream of ceramide.  相似文献   

18.
TNF-alpha has been shown to inhibit procollagen alpha1(I) expression in hepatic stellate cells (HSC), although the molecular mechanisms involved have not been fully established. In the present work, we studied the possible role played by oxidative stress and NFkappaB on the antifibrogenic action of TNF-alpha on a cell line of rat HSC. Treatment of HSC with TNF-alpha did not affect either intracellular levels of reactive oxygen species or lipid peroxidation, but caused a decrease on reduced glutathione (GSH) levels. Restoration of intracellular GSH by incubation with exogenous GSH prevented the inhibition of procollagen alpha1(I) levels caused by TNF-alpha. The effect of GSH was not mimicked by antioxidants like deferoxamine, tempol or trolox. Activation of NFkappaB by TNF-alpha was also abolished by preincubation of HSC with GSH, but not by deferoxamine, tempol or trolox. These results point to GSH depletion as a mediator of TNF-alpha action in HSC.  相似文献   

19.
The stimulation of DNA synthesis in lymphocyte populations was previously shown to depend strongly on the intracellular glutathione (GSH) level. Since T cell growth is known to depend on interleukin 2 (IL-2), the experiments in this report were designed to determine whether intracellular GSH depletion may inhibit IL-2 production or the IL-2 dependent DNA synthesis. Our experiments revealed that IL-2 production and DNA synthesis of mitogenically stimulated splenic T cells have indeed different requirements for GSH. The addition of relatively high concentrations of GSH (5 mM) to cultures of concanavalin A (Con A)-stimulated splenic T cells was found to augment strongly the DNA synthesis but inhibited the production of IL-2. Moderate intracellular GSH levels, however, are apparently not inhibitory for IL-2 production, since intracellular GSH depletion by cysteine starvation or by graded concentrations of DL-buthionine sulfoximine (BSO) had virtually no effect on IL-2-specific mRNA expression and the production of T cell growth factor (TCGF). The DNA synthesis activity, in contrast, was strongly suppressed after GSH depletion with either method. As in cultures of splenic T cells, GSH depletion had no substantial effect on the induction of IL-2 mRNA and TCGF production in several mitogenically stimulated T cell clones. Taken together, our experiments suggest that complex immune response may operate best at intermediate GSH levels that are not too high to inhibit IL-2 production but sufficient to support DNA synthesis.  相似文献   

20.
Tao L  English AM 《Biochemistry》2004,43(13):4028-4038
Recombinant human brain calbindin D(28K) (rHCaBP), human Cu,Zn-superoxide dismutase (HCuZnSOD), rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and bovine serum albumin (BSA) were found to be S-glutathiolated in decomposed S-nitrosoglutathione (GSNO) solutions. Tryptic or Glu-C digestion and MALDI-TOF MS analyses of the digests are consistent with S-thiolation of Cys111 and Cys187 of HCuZnSOD and rHCaBP, respectively, upon exposure to decomposed GSNO. GAPDH activity analysis reveals that S-glutathiolation most likely occurs on the active site Cys149, and the single free Cys34 is assumed to be the site of S-glutathiolation in BSA. The yields of S-glutathiolation of rHCaBP, GAPDH, and BSA were much higher than those of HCuZnSOD. The latter is limited by the accessibility of Cys111 to the glutathiolating reagent in the HCuZnSOD dimer. Unlike decomposed GSNO, fresh GSNO, reduced glutathione (GSH), and oxidized glutathione (GSSG) are not efficient S-glutathiolating agents for the proteins examined here. On the basis of analysis by mass spectrometry and UV-visible absorption, GSNO decomposition in the dark at room temperature yields glutathione disulfide S-oxide [GS(O)SG], glutathione disulfide S-dioxide (GSO(2)SG), and GSSG as products. GS(O)SG is the efficient protein S-glutathiolating agent in GSNO solutions, not GSNO, which does not carry out efficient S-glutathiolation of rHCaBP, HCuZnSOD, or GAPDH in vitro. A hydrolysis pathway yielding GSOH and nitroxyl (HNO/NO(-)) as intermediates is proposed for GSNO decomposition in the dark. This is based on inhibition of GSNO breakdown by dimedone, a reagent specific for sulfenic acids, and on nitroxyl scavenging by metmyoglobin. The results presented here are contrary to numerous reports of protein S-thiolation by low-molecular weight S-nitrosothiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号