首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The trigeminal ganglion of rat and guinea pig was studied for the presence of immunoreactive substance-P using fluorescence, light and electronmicroscopy. In untreated animals substance P containing cells, with a diameter of 15 to 50 m, were distributed throughout the ganglion and comprised 10–30% of all ganglion cells. Colchicine, injected intraventricularily to inhibit intra-axonal transport, had no effect on the number of substance P cells; but when the drug was injected directly into the posterior root of the ganglion, the proprotion of these cells increased to as much as 50%. In the electron microscope, immunoreactive substance-P was confined to ganglion cells classified as B type according to the arrangement of subcellular organelles, and to unmyelinated nerve fibers. Subcellularily the immunoreactivity appeared in cytoplasmic vesicles, as well as dispersed in the nerve fibers and the perikarya of neurons. The great number of substance P immunoreactive ganglion cells suggests that they do not comprise a well defined subpopulation of the B-cells.However, the immunoreactivity was restricted to a distinct ultrastructural type of neurons with unmyelinated nerve fibers, suggesting that they also may share some distinct functions.  相似文献   

2.
本研究应用免疫组织化学方法系统地观察了P物质(SP)、亮氨酸脑啡肽(L-ENK)在豚鼠耳蜗的分布以及SP、L-ENK免疫反应阳性神经纤维与Corti's器毛细胞之间的关系,结果表明:SP的免疫反应活性(SP-IR)存在于耳蜗螺旋神经节的部分神经细胞及传入神经纤维中,在Corti's器的毛细胞下方亦可见SP免疫反应阳性纤维;L-ENK的免疫反应活性(ENK-IR)存在于耳蜗的传出神经纤维中。节内螺旋束、内螺旋束、隧道螺旋束、横贯纤维均含有大量的L-ENK免疫反应阳性纤维,Cort's器中的L-ENK免疫反应阳性终末与毛细胞之间具有密切接触,由此提示,SP可能为听觉初级传入神经递质之一;L-ENK作为传出神经递质或调质对听觉传入起调控作用。  相似文献   

3.
Summary Paraffin sections of cervical and upper thoracic paravertebral ganglia of the cat were investigated by immunohistochemistry using antisera directed against calcitonin gene-related peptide (CGRP). The relationships of CGRP-immunoreactive structures to those exhibiting immunoreactivity to antisera against other regulatory peptides and dopamine--hydroxylase (DBH), respectively, were studied in consecutive sections. Singly scattered CGRP-immunoreactive neuronal perikarya were observed in the superior and middle cervical ganglia as well as in the stellate ganglion. These neurons also displayed immunoreactivity to vasoactive intestinal polypeptide (VIP), and some additionally exhibited faint substance-P immunoreactivity. DBH- and neuropeptide Y-immunoreactive ganglion cells were not identical with CGRP-immunoreactive neuronal cell bodies.According to the immunoreactive properties of varicosities, which abut on CGRP/VIP-immunoreactive perikarya, three types of CGRP/VIP-immunoreactive ganglion cells could be distinguished: (1) CGRP/VIP-immunoreactive neurons being surrounded by somatostatin-immunoreactive nerve fibers, (2) neurons being approached by both DBH- and met-enkephalin-immunoreactive varicosities, and (3) neurons receiving both DBH- and neurotensin-immunoreactive fibers. The stellate and upper thoracic ganglia harbored clusters of intensely VIP-immunoreactive somata, which lacked CGRP-immunoreactivity. Fine somatostatin-immunoreactive and coarse CGRP-immunoreactive fibers were distributed within these clusters, whereas patches of neurotensin-immunoreactive fibers were complementarily arranged. At all segmental levels investigated, a few postganglionic neurons were approached by both CGRP-immunoreactive and substance P-immunoreactive varicosities, but lacked a VIP-immunoreactive innervation. Therefore, CGRP/substance P-immunoreactive fiber baskets appeared rather to be of extraganglionic origin than to emerge from intraganglionic CGRP/VIP/SP neurons. CGRP-immunoreactive cell bodies or fibers were absent in clusters of small paraganglionic cells, but some of the solitary paraganglionic cells displayed CGRP-immunoreactivity. Our findings establish the presence of CGRP-immunoreactivity in a population of sympathetic neurons in the cat. A highly differentiated, segment-dependent organizational pattern of neuropeptides in cervico-thoracic paravertebral ganglia was demonstrated.Supported by Deutsche Forschungsgemeinschaft grant He 919/6-2  相似文献   

4.
The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dot-like terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

5.
Summary Calcitonin gene-related peptide immunoreactivity was localized immunohistochemically in nerve fibers innervating the biliary pathway and liver of the guinea-pig. Immunoreactive fibers are present in all layers of the gallbladder and biliary tract and are particularly numerous around blood vessels. In the liver, immunoreactive processes are usually restricted to the interlobular space and porta hepatis, and only a few, very thin, beaded processes were observed in the hepatic parenchyma. A rich innervation is also associated with the vena portae. Positive ganglion cell bodies were not visualized within the ganglionated plexus of the biliary system, whereas they were found in the myenteric and submucosal plexus in the cranial portion of the duodenum corresponding to the sphincter of Oddi. The vast majority, if not all, of calcitonin gene-related peptide-immunoreactive fibers contain substance P immunoreactivity; however, there are some substance P-containing fibers lacking calcitonin gene-related peptide immunoreactivity. The lack of co-occurrence of calcitonin gene-related peptide and substance P immunoreactivities in intrinsic ganglion cells suggests that these two peptides are coexpressed in the extrinsic component of the innervation of the hepatobiliary system.  相似文献   

6.
Summary The occurrence of substance P-like immunoreactivity was studied in the locust brain at light and electron microscopic level using monoclonal IgG fraction to substance P. Small immunoreactive perikarya have been found beside the medial neurosecretory cells in horizontal brain sections. Widespread immunoreactivity was also observed in the protocerebral neuropil notably in the central body and bordering on the corpora pedunculata. The reaction endproduct appeared as fine, more or less round particles in the central body, and as coarse varicosities and wavy fibres bordering the peduncles. The roundish particles probably represent nerve terminals, while the wavy fibers correspond to neural processes. In the vicinity of the lobe immunoreactivity was not observed. Electron microscopically, a number of immunoreactive terminals were found in the protocerebral neuropil. The reaction endproduct was accumulated mostly in large dense core granules/average diameter 80 nm/however reaction endproduct was also observed on the external surface membranes of clear vesicles and mitochondria. Our results suggest the widespread occurrence of a substance-P immunoreactive neuropeptide in the cerebral ganglia of the migratory locust.  相似文献   

7.
Summary The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dotlike terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

8.
The distribution and origin of substance P (SP) and neurokinin A (NKA) were studied in rat in the anterior buccal glands, which are minor mucous salivary glands. Indirect immunofluorescence staining showed moderate SP and NKA innervation of salivary acini and interlobular ducts, whereas blood vessels were more sparsely innervated, and there were few nerve fibers in the stroma and around the intralobular ducts. About 10%–20% of the trigeminal ganglion cells showed equally strong immunoreactivity to both SP and NKA. Unilateral denervation of the branches of the trigeminal nerve caused complete disappearance of the stromal fibers and greatly reduced the number of all other SP-immunoreactive and NKA-immunoreactive nerve fibers. In the superior cervical ganglia, SP and NKA immunoreactivity was restricted to small intensely fluorescent cells; SP and NKA immunoreactivity was absent from principal ganglionic cells, and thus sympathectomy had no any effect on the number or distribution of fibers immunoreactive for SP and NKA in the anterior buccal glands. The fibers remaining after sensory denervation could have been of parasympathetic origin, indicating a dual origin of nerves immunoreactive for SP and NKA in these glands. The present data demonstrate that the major part of the glandular SP and NKA innervation in the minor salivary glands derives from the trigeminal ganglia. The distribution of the peripheral nerve fibers indicates that they may play a role in the delivery of potent neuropeptides involved in the vascular, secretory, and motor (myoepithelial cells) functions of salivary glands.  相似文献   

9.
There are numerous aldehyde fuchsin (AF)-positive, neurosecretory cells of medium size (A cells) and a small number of large, AF-negative neurons (B cells) in the cortical layer of the cerebral ganglion. In the subesophageal ganglion, symmetrical groups of AF-positive cells lie ventrally. The peroxidase--antiperoxidase (PAP) method was used for the immunocytochemical study of substance P and ACTH in these ganglia. In addition, the presence of L-enkephalin and alpha endorphin could be confirmed. Using rabbit antibodies to substance P we found small immunoreactive neurons among negative A and B cells in the cerebral ganglion. The processes of these immunoreactive cells could be traced to the subcortical synaptic neuropil. With antibodies to ACTH, activity was visible in perikarya similar in size to A neurons. A part of the nerve terminals of the synaptic zone, some of the B neurons and further several nerve cells of the subesophageal ganglion reacted positively. Successive demonstration of substance P and ACTH on the same section showed that the two materials occurred in different cell types. Using antiopsin antibody in an indirect immunocytochemical test we observed strong reaction in numerous medium-sized perikarya and in nerve fibres of the synaptic zone of the cerebral ganglion, further in some neurons of the subesophageal and abdominal ganglia. In contrast to this result, the photoreceptor cells of the prostomium and cerebral ganglion were negative. Presumably, substance P is present in a perikaryon type hitherto unrecognized while ACTH and antiopsin reactions seem to be located first of all in A cells.  相似文献   

10.
The origin of nitric oxide synthase-containing nerve fibers in rat celiac-superior mesenteric ganglion was examined using retrograde tracing techniques combined with the immunofluorescence method. Fluoro-Gold was injected into the celiac-superior mesenteric ganglion. Neuronal cell bodies retrogradely labeled with Fluoro-Gold in the thoracic spinal cord, the dorsal root ganglia at the thoracic level, the nodose ganglion, and the intestine from the duodenum to the proximal colon were examined for nitric oxide synthase immunoreactivity. About 60% of sympathetic preganglionic neurons in the intermediolateral nucleus projecting to the celiac-superior mesenteric ganglion were immunoreactive for nitric oxide synthase, as were approximately 27% of nodose ganglion neurons and about 65% of dorsal root ganglion neurons projecting to the cceliac-superior mesenteric ganglion. Neurons projecting to the celiac-superior mesenteric ganglion were found in the myenteric plexus of the small and large intestine. In the proximal colon, about 23% of such neurons were immunoreactive for nitric oxide synthase. However, in the small intestine, no immunoreactivity was found in these neurons.  相似文献   

11.
Summary The iris and choroid membrane of the adult rat contain nerve fibers expressing immunoreactivity to the neuropeptide galanin. The density and distribution of galanin-positive nerve fibers varied from iris to iris and, particularly, among animals. Smooth, non-terminal axons were seen running in nerve bundles consisting of otherwise negative fibers. From the choroid membrane these bundles reached the iris via the ciliary body. Axons were frequently seen to branch giving rise to a sparse system of varicose, single fibers in the dilator plate and sphincter area. Galanin-positive fibers were sometimes also seen outlining blood vessels.Capsaicin, in a dose that causes permanent depletion of substance P- and cholecystokinin-immunoreactive fibers in the iris, caused no change in amount of galanin-positive fibers. Removal of the superior cervical ganglion caused a rapid and pronounced increase in the number of galanin-immunoreactive nerve fibers. Similarly, removal of the ciliary ganglion appeared to increase galanin immunoreactivity, while removal of the pterygopalatine ganglion was less effective. Lesioning of the trigeminal ganglion caused a disappearance of galanin immunoreactivity. The sympathetectomy-induced increase was counteracted by capsaicin.Galanin-positive nerve cell bodies were present in both the superior cervical and the trigeminal ganglia. In the superior cervical ganglion, immunoreactive galanin did not seem to coexist with neuropeptide Y-positive cells; in the trigeminal ganglion, some galanin-positive cells also contained calcitonin gene-related peptide (CGRP) immunoreactivity, while most cells did not. In the iris, double-staining suggested that CGRP and galanin immunoreactivities were contained in different fiber populations.We conclude that the rat iris and choroid membrane contain a sparse plexus of nerve fibers expressing galanin-like immunoreactivity. It is suggested that these fibers are derived from the trigeminal ganglion. The iris is able to respond with a pronounced increase in number of galanin-immunoreactive nerve fibers to certain denervation procedures.  相似文献   

12.
Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum   总被引:4,自引:0,他引:4  
Previous studies have identified Dogiel type II neurons with cell bodies in the myenteric plexus of guinea-pig ileum to be intrinsic primary afferent neurons. These neurons also have distinctive electrophysiological characteristics (they are AH neurons) and 82-84% are immunoreactive for calbindin. They are the only calbindin-immunoreactive neurons in the plexus. Neurons with analogous shape and electrophysiology are found in submucosal ganglia, but, with antibodies used in previous studies, they lack calbindin immunoreactivity. An antiserum that is more effective in revealing calbindin in the guinea-pig enteric nervous system has been reported recently. In the present work, we found that this antiserum reveals the same population that was previously identified in myenteric ganglia, and does not reveal any further population of myenteric nerve cells. In submucosal ganglia, 9-10% of nerve cells were calbindin immunoreactive with this antiserum. The submucosal neurons with calbindin immunoreactivity were also immunoreactive for choline acetyltransferase, but not for neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP). Small calbindin-immunoreactive neurons (average profile 130 microm2) were calretinin immunoreactive, whereas the large calbindin-immunoreactive neurons (average profile 330 microm2) had tachykinin (substance P) immunoreactivity. Calbindin immunoreactivity was seen in about 50% of the calretinin neurons and 40% of the tachykinin-immunoreactive submucosal neurons. It is concluded that, in the guinea-pig ileum, only one class of myenteric neuron, the AH/Dogiel type II neuron, is calbindin immunoreactive, but, in the submucosal ganglia, calbindin immunoreactivity occurs in cholinergic, calretinin-immunoreactive, secretomotor/vasodilator neurons and AH/Dogiel type II neurons.  相似文献   

13.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

14.
Summary Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin generelated immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

15.
A combination of neuroanatomic techniques was used to examine the origin and neuropeptide content of nerve fibers in the airway epithelium of adult cats. By the use of immunocytochemical methods, the peptides substance P (SP) and calcitonin gene-related peptide (CGRP) were colocalized in airway epithelial nerve fibers. Two days after wheat germ agglutinin (WGA) was injected into the nodose ganglion, fibers containing WGA immunoreactivity (IR) were detected in the airway epithelium. SP-like immunoreactivity (LI) and CGRP-LI were demonstrated separately in the WGA-IR fibers, establishing their origin from nerve cell bodies of nodose ganglion. Vagal transection inferior to the nodose ganglion reduced the number of SP- and CGRP-IR fibers by greater than 90% in ipsilateral airways. In contralateral airways, SP-IR fibers were substantially reduced, whereas the effect on CGRP-IR fibers was not statistically significant. Vagotomy superior to the nodose ganglion did not alter the density of peptide-IR fibers. The results prove that SP- and CGRP-IR nerve fibers of cat airway epithelium originate from nerve cell bodies in the nodose ganglion and that SP- and CGRP-like peptides may be stored together in some nerve fibers of the airway epithelium.  相似文献   

16.
The distribution and origin of substance P immunoreactive nerve elements have been studied in the guinea-pig prevertebral ganglia by the indirect immunohistochemical technique, using a monoclonal antibody to substance P. Non-varicose substance P immunoreactive nerve fibres enter or leave the ganglia in all nerves associated with them, traversing the ganglia in larger or smaller bundles. Networks, mainly single-stranded, of varicose substance P immunoreactive nerve fibres also permeate the ganglia, forming a loose meshwork among the neurons. Similar networks are present in the lumbar paravertebral ganglia. In all these ganglia, neuronal somata do not in general show substance P immunoreactivity. The various nerves connected with the inferior mesenteric ganglion have been cut, in single categories and in various combinations, and the ganglion examined, after intervals of up to six days. Cutting the colonic or hypogastric nerves, which connect the ganglion with the hindgut and pelvic organs, leads to accumulation of substance P immunoreactive material in their ganglionic stumps, extending retrogradely to intraganglionic non-varicose fibres traceable through into the intermesenteric and lumbar splanchnic nerves. There is some local depletion of intraganglionic varicose networks. Cutting the intermesenteric nerve, which connects the coeliac-superior mesenteric ganglion complex with the ganglion, leads to accumulation of substance P immunoreactive material in its cranial stump and depletion of its distal stump; a minimal depletion is detectable in the inferior mesenteric ganglion itself. Cutting the lumbar splanchnic nerves, which connect the ganglion with the upper lumbar spinal cord and dorsal root ganglia, leads to accumulation of substance P immunoreactive material in their proximal stumps and total depletion of their distal, ganglionic stumps; in the ganglion there is subtotal loss of non-varicose substance P immunoreactive fibres and of varicose nerve networks, and the few surviving non-varicose fibres are traceable across the ganglion from the intermesenteric nerve to the colonic and hypogastric nerves. Cutting the intermesenteric and lumbar splanchnic nerves virtually abolishes substance P immunoreactive elements from the ganglion within three days postoperatively. It is concluded that these arise centrally to the ganglion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I-II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I-III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I-II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

18.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

19.
Summary Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland.The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland.The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

20.
Trigeminal ganglion cells supplying the cornea were traced with intra-axonally transported horseradish peroxidase and, subsequently studied for the presence of substance P-like immunoreactivity. Approximately 0%-30% of trigeminal ganglion cells contained immunoreactive substance P. These cells were of a small size (15-50 micrometers in diameter) and were distributed throughout the ganglion. The ganglion cells supplying the cornea were of a relatively small size as well but were confined to the anteromedial part of the ganglion. Some of these cells were found to contain immunoreactive substance P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号