首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Walliker D  Waters AP 《Parassitologia》1999,41(1-3):125-127
We provide a brief commentary on aspects of the analysis of the genetics and evolution of malaria parasites. Any attempt to understand the nature and manifestations of an infectious disease requires an understanding of the genetics of both pathogen and host. The outcome of a malaria infection, i.e. whether it is asymptomatic, mild, severe or causes cerebral malaria, is due to a complex interaction between the products of parasite and host genes. In general terms, genes in the parasite determine its ability to infect the host, its virulence, etc., while host genes will determine resistance or susceptibility to infection. More than this, however, genetics is about the spread of genes in populations, how they mutate and recombine to produce novel genotypes, and how the parasite and its hosts co-evolve with changing environments. This is a complex subject, and we present some discussion of a few aspects of its analysis.  相似文献   

2.
Murine models have proved to be excellent tools in the support of studies of the human genetic bases of malaria resistance and have enabled the mapping of 12 resistance loci, eight of them controlling parasitic levels and four controlling cerebral malaria. Further studies using this method have identified a Pklr variant that confers resistance to murine malaria, a result that shows the potential of this approach to aid the understanding of mechanisms of disease resistance. In the future, the use of murine models for genetic resistance to malaria could lead to the identification of relevant genetic factors that control this devastating disease.  相似文献   

3.
Progress in genomics and the associated technological, statistical and bioinformatics advances have facilitated the successful implementation of genome-wide association studies (GWAS) towards understanding the genetic basis of common diseases. Infectious diseases contribute significantly to the global burden of disease and there is robust epidemiological evidence that host genetic factors are important determinants of the outcome of interactions between host and pathogen. Indeed, infectious diseases have exerted profound selective pressure on human evolution. However, the application of GWAS to infectious diseases has been relatively limited compared with non-communicable diseases. Here we review GWAS findings for important infectious diseases, including malaria, tuberculosis and HIV. We highlight some of the pitfalls recognized more generally for GWAS, as well as issues specific to infection, including the role of the pathogen which also has a genome. We also discuss the challenges encountered when studying African populations which are genetically more ancient and more diverse that other populations and disproportionately bear the main global burden of serious infectious diseases.  相似文献   

4.
P Jolicoeur 《FASEB journal》1991,5(10):2398-2405
Murine AIDS (MAIDS) is a disease that shows many similarities with human AIDS. Several immunological parameters of the disease have been analyzed and genetic studies have mapped a gene (or genes) of resistance in the H-2 complex and shown that the genetic background of the mouse can significantly modify some features of the disease. The etiologic agent of MAIDS is a defective murine leukemia virus that seems able to induce disease in the absence of virus replication. This defective virus induces proliferation of its target cells and the cell expansion was found to be oligoclonal, thus suggesting that the immunodeficiency observed in these mice is a paraneoplastic syndrome. The excellent response of MAIDS mice to antineoplastic agents is consistent with this notion. This animal model has already been useful in stimulating the emergence of novel questions and the formulation of new hypotheses about human AIDS, namely about the role of defective HIV, the role of HIV replication in the progression of the disease, and the importance to identify the target cells of HIV in vivo. Although MAIDS and AIDS are not identical and are induced by retroviruses of different classes, the availability of such a model in an easily accessible small animal species, whose genetics is very sophisticated, may be instrumental in understanding the pathogenesis of AIDS if some of the cellular and molecular affected pathways are common in both diseases.  相似文献   

5.
The profound influence that the genetic makeup of the host has on resistance to malaria infection has been established in numerous animal studies. This genetic heterogeneity is one of the main causes of the difficulties in developing an effective malaria vaccine. Segregation analysis is the first step in identifying the nature of genetic factors involved in the expression of human complex diseases, as infectious diseases. To assess the role of host genes in human malaria, we performed segregation analysis of blood parasite densities in 42 Cameroonian families by using both the unified mixed model and the class D regressive model of analysis. The results provide clear evidence for the presence of a recessive major gene controlling the degree of infection in human malaria. Parameter estimates show a frequency of .44-.48 for the deleterious allele, indicating that about 21% of the population is predisposed to high levels of infection.  相似文献   

6.
Malaria, a disease caused by the protozoan parasite Plasmodium, remains a serious healthcare problem in developing countries worldwide. While the host-parasite relationship in humans has been difficult to determine, the pliability of murine malaria models has enabled valuable contributions to the understanding of the pathogenesis of disease. Although no single model reflects precisely malaria infection of the human, different models collectively provide important information on the mechanisms of protective immunity and immunopathogenesis. This review summarizes progress towards understanding the broad spectrum of immune responsiveness to the blood stages of the malaria parasite during experimental infections in mice and highlights how examination of murine malarias sheds light on the factors involved in the modulation of vaccine-potentiated immunity.  相似文献   

7.
The haemoglobinopathies have a celebrated role in the study of human genetics as the first examples of balanced polymorphisms described in human populations. Over the last 50 years, considerable evidence has been provided to show that these traits do confer protection from malaria. More recently, the underlying mechanisms of protection have been examined. This short review summarizes these studies and where possible shows how the putative mechanisms of protection may be linked to redox processes.  相似文献   

8.
Recent twin studies of clinical malaria and immune responses to malaria antigens have underscored the importance of both major histocompatability complex (MHC) and non-MHC genes in determining variable susceptibility and immune responsiveness. By using a combination of whole genome genetic linkage studies of families and candidate genes analysis, non-MHC genes are being mapped and identified. Human leucocyte antigen (HLA) genotype was found to affect susceptibility to severe malaria in a large study of West African children. T lymphocytes that may mediate such resistance have been identified and their target antigens and epitopes characterized. Some of these epitopes show substantial polymorphism, which appears to result from immune selection pressure. Natural variant epitopes have been found to escape T-cell recognition in cytolytic and other T-cell assays. More recently a novel immune escape mechanism has been described in viral infections, altered peptide ligand antagonism, whereby variants of a T-cell epitope can downregulate or ablate a T cell response to the index peptide. The likely implications of such immune escape mechanisms for the population structure of malaria parasites, for HLA associations with malaria infection and disease, and for the design of new malaria vaccines, are discussed. The evolutionary consequences of such molecular interactions can be assessed by using mathematical models that capture the dynamic of variable host and parasite molecules. Combined genetic, immunological and mathematical analysis of host and parasite variants in natural populations can identify some mechanisms driving host-parasite coevolution.  相似文献   

9.
Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.  相似文献   

10.
The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.  相似文献   

11.
Transgenic mosquitoes and malaria transmission   总被引:4,自引:0,他引:4  
As the malaria burden persists in most parts of the developing world, the concept of implementation of new strategies such as the use of genetically modified mosquitoes to control the disease continues to gain support. In Africa, which suffers most from malaria, mosquito vector populations are spread almost throughout the entire continent, and the parasite reservoir is big and continuously increasing. Moreover, malaria is transmitted by many species of anophelines with specific seasonal and geographical patterns. Therefore, a well designed, evolutionarily robust and publicly accepted plan aiming at population reduction or replacement is required. The task is twofold: to engineer mosquitoes with a genetic trait that confers resistance to malaria or causes population suppression; and, to drive the new trait through field populations. This review examines these two issues, and describes the groundwork that has been done towards understanding of the complex relation between the parasite and its vector.  相似文献   

12.
BackgroundThe composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale.ResultsHere, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes.ConclusionsOur results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0759-1) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.  相似文献   

15.
Abstract

The haemoglobinopathies have a celebrated role in the study of human genetics as the first examples of balanced polymorphisms described in human populations. Over the last 50 years, considerable evidence has been provided to show that these traits do confer protection from malaria. More recently, the underlying mechanisms of protection have been examined. This short review summarizes these studies and where possible shows how the putative mechanisms of protection may be linked to redox processes.  相似文献   

16.
Migraine is a common neurological disorder characterised by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia and occasionally visual sensory disturbances. Migraine is a complex disease caused by an interplay between predisposing genetic variants and environmental factors. It affects approximately 12?% of studied Caucasian populations with affected individuals being predominantly female. Genes involved in neurological, vascular or hormonal pathways have all been implicated in predisposition towards developing migraine. All of these are nuclear encoded genes, but given the role of mitochondria in a number of neurological disorders and in energy production it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. Mitochondrial DNA has been a useful tool for studying population genetics and human genetic diseases due to the clear inheritance shown through successive generations. Given the clear gender bias found in migraine patients it may be important to investigate X-linked inheritance and mitochondrial-related variants in this disorder. This paper explores the possibility that mitochondrial DNA changes may play a role in migraine. Few variants in the mitochondrial genome have so far been investigated in migraine and new studies should be aimed towards investigating the role of mitochondrial DNA in this common disorder.  相似文献   

17.
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.  相似文献   

18.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.  相似文献   

19.
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases.  相似文献   

20.
Genetic analysis of resistance to infectious disease reveals many important cues that have led to new insights into the interaction between pathogen and host. This knowledge might help with a better prognosis for diseases, and to the development of novel therapeutics. This review focuses on genes and loci that control susceptibility to diseases with an important epidemiologic impact, such as AIDS, hepatitis B, gastritis and peptic ulcer, tuberculosis, leprosy, malaria, schistosomiasis and leishmaniasis. New perspectives for the integration of human and mouse genetics that contribute greatly to our understanding of regulatory mechanisms in health and disease, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号