首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.  相似文献   

2.
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.  相似文献   

3.
Primary hepatocytes were cultured at oxygen tensions similar to those reported to be present in periportal (13% O2) and pericentral (4% O2) regions of the liver lobules. Cellular DNA and protein content of individual hepatocytes were determined simultaneously by two-parameter (DNA/protein) flow cytometry after 1, 4, and 7 days in culture. pO2 tensions monitored on line in conventional plastic culture dishes revealed that the depletion of the pO2 in the culture medium depended on the number of hepatocytes plated. When cultured as monolayer after 4-7 days at periportal (13% O2) and more pronounced at pericentral oxygen concentration (4% O2), up to 90% of the hepatocytes showed degenerated nuclei but normal protein content. By using culture dishes with teflon membrane bottoms the oxygen tension in the culture medium was accurately maintained by the incubator atmosphere. At pericentral oxygen tension the fraction of 2N cells increased by about 20%. That of the 4N cell was not affected, and the contribution of 8N hepatocytes dropped to 70% compared to cultures at periportal oxygen tension. Concomitantly, in the 4% O2 hepatocyte cultures the protein content of the 2N and the 4N cells was better preserved and increased by up to 10%. These results suggest that in vitro at pericentral oxygen conditions (4% O2) ageing of hepatocytes is delayed, regenerating processes are better maintained, and, furthermore, freshly isolated 4N hepatocytes have the potency to adapt their metabolism in vitro to periportal as well as to perivenous oxygen tensions.  相似文献   

4.
A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors.  相似文献   

5.
Hemoglobin-based O(2) carriers (HBOCs), which are developed as an alternative to blood transfusion, provide O(2) delivery. At present, there is no model to predict the O(2) transport for a red blood cell-HBOC mixture on a whole organ basis. On the basis of the first principles of mass balance, a model of O(2) transport for an organ was derived to calculate venous Po(2) (Pv(O(2))) for a given inlet arterial Po(2) (Pa(O(2))), blood flow, and oxygen consumption. The model was validated by using several in vivo animal studies on HBOC administration for a wide range of HBOC oxygen-binding parameters and predicted Pv(O(2)) for various Pa(O(2)) in the same species. The model was also used to predict the effect of HBOC affinity and cooperativity on Pv(O(2)) for humans. The results indicate that Pv(O(2)) can be increased at a constant blood flow-to-oxygen consumption ratio by reducing the affinity of HBOC for normoxia and mild hypoxia; however, a high-affinity HBOC would be more efficient in maintaining higher Pv(O(2)) for severe hypoxia (Pa(O(2)) < 40 Torr).  相似文献   

6.
Second generation hemoglobin-based O(2) carriers (HBOCs) are being developed with high O(2) affinity (low P(50)) in order to suppress vasoconstriction elicited by over-oxygenating tissues, a problem associated with low O(2) affinity first generation HBOCs. Our group has previously investigated the polymerization of hemoglobin (Hb) with dialdehydes as a strategy for engineering high O(2) affinity HBOCs. In this study, two novel reactive dialdehydes were synthesized by ring-opening 2-chloroethyl-beta-D-fructopyranoside (2-CEFP) and 1-o-octyl-beta-D-glucopyranoside (1-OGP) at the 1,2-diol position, respectively, to yield novel Hb polymerizing reagents. High-affinity polymerized HBOCs were synthesized by reacting R-state bovine hemoglobin (bHb) with ring-opened 2-CEFP and 1-OGP at cross-linker to bHb molar ratios ranging from 10:1 to 30:1. The resulting polymerized bovine HBOCs (bHBOCs) displayed P(50)s ranging from 7 to 18 mmHg, cooperativities ranging from 0.8 to 1.4, and methemoglobin (metHb) levels ranging from 3% to 10%. The cross-linking reaction also stabilized the third stepwise Adair coefficient for bHbs reacted with ring-opened 1-OGP at cross-linker to bHb molar ratios of 20:1 and 30:1 and for bHbs reacted with ring-opened 2-CEFP at molar ratios of 30:1. Additionally, the number-averaged molecular weight, M(n), of each polymerized bHBOC was larger compared to bHb. Molecular weight distributions leaning towards larger molecular weight bHBOCs were obtained by increasing the cross-linker to bHb molar ratio. Taken together, the results of this study have identified novel Hb polymerization reagents that are easy to synthesize, and that are capable of yielding bHBOCs with higher O(2) affinities and weight-averaged molecular weights compared to bHb.  相似文献   

7.
Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O2 limited transport, which reduces their performance. This modeling study seeks to investigate if O2 carrying solutions consisting of mixtures of hemoglobin‐based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O2 transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O2 in the pseudo‐homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O2 concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O2 to cultured hepatocytes. Moreover, the in vivo O2 spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO2 of 80 mmHg. Therefore, we expect that PFC‐based oxygen carriers will be more efficient at transporting O2 at higher O2 levels (e.g., at an inlet pO2 of 760 mmHg, which corresponds to pure O2 in equilibrium with aqueous cell culture media at 1 atm). Biotechnol. Bioeng. 2010; 105: 534–542. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Bovine red blood cells (bRBCs) can potentially provide a simplistic and economic means of improving oxygenation within hollow fiber (HF) bioreactor cell cultures. Bovine RBCs are also interesting since many of their physical properties can be altered as a result of glutaraldehyde (G) cross-linking. Cross-linking bRBCs produces an oxygen carrier that is expected to be beneficial under specific circumstances (i.e., delivery of oxygen to cells that are sensitive to free hemoglobin (Hb) and cells that require low inlet oxygen tensions). We have examined the osmotic stability and electrophoretic mobility of cross-linked bRBCs and observed that cross-linking improves osmotic stability while minimally impacting electrophoretic mobility. The oxygen binding/dissociation properties (P(50) and n) of cross-linked bRBCs were also measured, and under the reported reaction conditions, cross-linking increased the oxygen affinity and reduced the cooperativity of bRBCs. A basic Krogh tissue cylinder model was then utilized to provide a quick a priori estimate of oxygen delivery and release to hepatocytes housed within a HF bioreactor in order to demonstrate potential oxygenation benefits arising with both normal and cross-linked bRBC media supplementation. This model showed that bRBCs generally improved oxygen delivery and release to HF cell cultures and that cross-linked bRBCs are particularly beneficial in specifically targeting oxygen delivery to cells maintained at low inlet oxygen tensions. Additionally, the model showed that bRBC supplementation can significantly improve oxygen delivery without requiring extreme bRBC concentrations.  相似文献   

9.
A mathematical model was developed to study O2 transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin‐based O2 carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG‐conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross‐flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O2 concentration profile as well as the O2 transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O2 transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo‐like O2 spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross‐flow have a very limited effect on O2 transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O2. Biotechnol. Bioeng. 2009;102: 1603–1612. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Using an oxystat system, menadione (2-methyl-1,4-naphthoquinone)-mediated oxygen uptake was investigated in isolated rat hepatocytes, in malate/glutamate-supplemented mitochondria, and in NADPH-reduced microsomes at steady-state oxygen partial pressures (pO2) between 0.1 to 100 mm Hg (0.2-150 microM O2). Menadione-mediated stimulation of oxygen uptake was half-maximal at pO2 of 0.5, 0.2, and 0.9 mm Hg, respectively. In hepatocytes and mitochondria half-maximal concentrations of menadione were 15 and 4 microM. However, in microsomes saturation with menadione was not reached at concentrations up to 300 microM. Antimycin A inhibited menadione-mediated oxygen uptake in hepatocytes and mitochondria by about three-fourths, while rotenone was without inhibitory effect; KCN inhibited practically completely. In mitochondria menadione-stimulated oxygen uptake was significantly inhibited by dicoumarol but further enhanced by the addition of ADP, even in the presence of rotenone. The results suggest that menadione-mediated hepatocellular oxygen uptake proceeds almost independently of pO2 in most regions of the liver lobule but that in areas of low pO2 such as the centrolobular regions limitation by oxygen may occur. They also demonstrate that in the intact hepatocyte menadione-mediated oxygen uptake predominantly (greater than 90%) results from electron transfer in the mitochondrial respiratory chain by menadione.  相似文献   

11.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

12.
Growth, acetylene reduction, and respiration rate were studied in batch and continuous cultures of Arthrobacter fluorescents at different oxygen partial pressures. The optimum pO2 values for growth and acetylene reduction were 0.05 and 0.025 atm, respectively, but microorganisms can tolerate higher pO2 values. The growth of cultures provided with combined nitrogen was dependent on oxygen availability, and strict anaerobic conditions did not support growth. Acetylene reduction of a population grown in continuous culture and adapted to low pO2 (0.02 atm) was much more sensitive to oxygenation than that of a population adapted to high pO2 (0.4 atm). Their maximum nitrogenase activity, at their optimal pO2 values, were quite different. The respiratory activity of nitrogen-fixing cultures increased with increasing oxygen tensions until a pO2 of 0.2 atm. At higher pO2 values, the respiration rate began to decrease.  相似文献   

13.
Two new globin proteins have recently been discovered in vertebrates, neuroglobin in neurons and cytoglobin in all tissues, both showing heme hexacoordination by the distal His(E7) in the absence of gaseous ligands. In analogy to hemoglobin and myoglobin, neuroglobin and cytoglobin are supposedly involved in O2 storage and delivery, although their physiological role remains to be solved. Here we report O2 equilibria of recombinant human neuroglobin (NGB) and cytoglobin (CYGB) measured under close to physiological conditions and at varying temperature and pH ranges. NGB shows both alkaline and acid Bohr effects (pH-dependent O2 affinity) and temperature-dependent enthalpy of oxygenation. O2 and CO binding equilibrium studies on neuroglobin mutants strongly suggest that the bound O2 is stabilized by interactions with His(E7) and that this residue functions as a major Bohr group in the presence of Lys(E10). As shown by the titration of free thiols with 4,4'-dithiodipyridine and by mass spectrometry, this mechanism of modulating O2 affinity is independent of formation of an internal disulfide bond under the experimental conditions used, which stabilize thiols in the reduced form. In CYGB, O2 binding is cooperative, consistent with its proposed dimeric structure. Similar to myoglobin but in contrast to NGB, O2 binding to CYGB is pH-independent and exothermic throughout the temperature range investigated. Our data support the hypothesis that CYGB may be involved in O2-requiring metabolic processes. In contrast, the lower O2 affinity in NGB does not appear compatible with a physiological role involving mitochondrial O2 supply at the low O2 tensions found within neurons.  相似文献   

14.
Eu et al., reported that O2 dynamically controls the redox state of 6-8 out of 50 thiols per skeletal ryanodine receptor (RyR1) subunit and thereby tunes the response of Ca2+-release channels to authentic nitric oxide (NO) [J.P. Eu, J. Sun, L. Xu, J.S. Stamler, G. Meissner, The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions, Cell 102 (2000) 499-509]. A role for O2 was based on the observation that RyR1 can be activated by submicromolar NO at physiological ( approximately 10 mmHg) but not ambient (approximately 150 mmHg) pO2. At ambient pO2, these critical thiols were oxidized but incubation at low pO2 reset the redox state of these thiols, closed RyR1 channels and made these thiols available for nitrosation by low NO concentrations. Eu et al., postulated the existence of a redox/O2sensor that couples channel activity to NO and pO2 and explained that "the nature of the 'redox/O2 sensor' that couples channel activity to intracellular redox chemistry is a mystery". Here, we re-examined the effect of pO2 on RyR1 and find that incubation of RyR1 at low pO2 did not alter channel activity and NO (0.5-50 microM) failed to activate RyR1 despite a wide range of pO2 pre-incubation conditions. We show that low levels of NO do not activate RyR1, do not reverse the inhibition of RyR1 by calmodulin (CaM) even at physiological pO2. Similarly, the pre-incubation of SR vesicles in low pO2 (for 10-80 min) did not inhibit channel activity or sensitization of RyR1 to NO. We discuss the significance of these findings and propose that caution should be taken when considering a role for pO2 and nitrosation by NO as mechanisms that tune RyRs in striated muscles.  相似文献   

15.
To investigate the mechanism(s) of hepatocyte radioresistance (D0 2.7 Gy), the radiosensitivities of respiring (37 degrees C) and nonrespiring (0 degrees C) hepatocytes were determined as a function of oxygen concentration. Fischer 344 female rat hepatocytes were isolated by liver perfusion, equilibrated in Leibowitz-15 media with different oxygen tensions, and exposed to 60Co radiation at either 37 or 0 degrees C. Cell survival and DNA single-strand breaks were used as the biological end points of radiosensitivity. The K value for respiring hepatocytes (37 degrees C) was 14.3 +/- 0.5 mm Hg O2 (18.8 +/- 0.7 mumol O2/liter), demonstrating that the K value for freshly isolated parenchymal hepatocytes is significantly greater than those previously obtained for cultured cells. In contrast, the K value for nonrespiring hepatocytes (0 degree C) is 1.4 +/- 0.4 mm Hg O2 (3.7 +/- 1.0 mumol O2/liter) indicating that hepatocyte respiration results in a plasma membrane-to-nucleus oxygen gradient of approximately 12.9 +/- 0.6 mm Hg (15.1 +/- 1.2 microns O2/liter). The hypothesis that the hepatic nucleus typically resides in a hypoxic condition, although the liver is uniformly perfused with well-oxygenated blood, is supported by (1) the nonradom perinuclear distribution of the mitochondria, (2) the high cellular respiration rate, and (3) the large intracellular oxygen diffusion distance in hepatocytes (25 microns diameter).  相似文献   

16.
Hb-vesicles (HbV) are artificial oxygen carriers that encapsulate purified Hb solution (35 g/dl) in unilamellar phospholipid vesicles (liposomes). The dispersion stability of HbV is attained using surface-modification with polyethylene glycol (PEG), so that the deoxygenated HbV can be stored at room temperature for years. Moreover, the intravenously injected HbV does not induce aggregation when contacted with blood components. Animal experiments have verified the safety and efficacy of HbV as a transfusion alternative. One advantage of HbV is that the O(2) affinity (P(50)) of HbV can be regulated easily to that of RBC (28 torr) and to other values by manipulating the amount of the allosteric effectors, such as pyridoxal 5'-phosphate, coencapsulated in HbV. It is possible that HbV with a lower P(50) (higher O(2) affinity) would retain O(2) in the normal tissue while unloading O(2) to a targeted hypoxic tissue. Small HbV (250-280 nm diameter) is distributed homogeneously in the plasma phase, and HbV would transport oxygen through collateral arteries in the ischemic tissues. Results of in vitro and in vivo experiments of the domestic and international collaborations have confirmed the possibility of targeted O(2) delivery by HbV.  相似文献   

17.
The skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1) contains approximately 50 thiols per subunit. These thiols have been grouped according to their reactivity/responsiveness toward NO, O(2), and glutathione, but the molecular mechanism enabling redox active molecules to modulate channel activity is poorly understood. In the case of NO, very low concentrations (submicromolar) activate RyR1 by S-nitrosylation of a single cysteine residue (Cys-3635), which resides within a calmodulin binding domain. S-Nitrosylation of Cys-3635 only takes place at physiological tissue O(2) tension (pO(2); i.e. approximately 10 mm Hg) but not at pO(2) approximately 150 mm Hg. Two explanations have been offered for the loss of RyR1 responsiveness to NO at ambient pO(2), i.e. Cys-3635 is oxidized by O(2) versus O(2) subserves an allosteric function (Eu, J. P., Sun, J. H., Xu, L., Stamler, J. S., and Meissner, G. (2000) Cell 102, 499-509). Here we report that the NO donors NOC-12 and S-nitrosoglutathione both activate RyR1 by release of NO but do so independently of pO(2). Moreover, NOC-12 activates the channel by S-nitrosylation of Cys-3635 and thereby reverses channel inhibition by calmodulin. In contrast, S-nitrosoglutathione activates RyR1 by oxidation and S-nitrosylation of thiols other than Cys-3635 (and calmodulin is not involved). Our results suggest that the effect of pO(2) on RyR1 S-nitrosylation is exerted through an allosteric mechanism.  相似文献   

18.
Hemoglobin‐based oxygen carriers (HBOCs) of various sizes have been developed so far, but their optimum size has not been clarified yet. Here, we examined the effect of HBOCs size on their interaction with cells using Shirasu porous glass (SPG) membrane emulsification technique, which enables precise tuning of particle size. Microspheres composed of bovine hemoglobin (bHb) and bovine serum albumin (BSA) was fabricated with the average diameters of 1.2–18.3 μm and the coefficient of variation of below 13%. Cellular uptake of the microspheres by RAW264.7 was observed at a diameter below 5 μm; however, uptake of the microspheres by HepG2 and HUVEC were not observed at any diameter. No enhancement of the generation of reactive oxygen species in the cytoplasm was detected at diameters above 9.8 μm in the three cell lines, due to their low cellular uptake. In addition, cytotoxicity of the microspheres decreased with increasing microsphere diameter in the three cell lines and microspheres of 18.3 μm showed good cellular compatibility regardless of the oxyhemoglobin percentage. Since cytotoxicity is a crucial factor in their applications, our systemic investigation would provide a new insight into the design of HBOCs. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1676–1684, 2015  相似文献   

19.
The molecular basis of BLAD is the D128G mutation of the gene coding for the CD18 subunit of beta-2 integrin. This mutation is lethal, since homozygous (BL/BL) animals die before they reach sexual maturity. In the 1990s, BLAD was the most widespread genetic disease in HF cattle worldwide. The aim of the present study was to determine the frequency of BLAD carriers among 4645 young breeding bulls in Poland in 1995-2006. The frequency of carriers of the mutated allele showed a clear decreasing trend. The highest frequency (7.9%) was recorded while implementing the BLAD control program (1995-1997). Regular monitoring has enabled a great reduction of this threat to the tested population. Today only sporadic cases of BL/TL heterozygotes are reported (ca. 0.8% in 2004-2006).  相似文献   

20.
The oxygen dependence of hepatic cellular respiration was studied by employing simultaneous organ spectrophotometry of cytochromes and hemoglobin, the latter used as an intrasinusoidal optical oxygen probe. The Km of cytochrome aa3 for oxygen was found to be 6.8 microM in the isolated perfused liver and 0.3 microM in suspensions of isolated hepatocytes. The results indicate that the sinusoid-to-cell pO2 gradient is about 5 torr. Optical determination of the average effective pO2 indicates that the axial sinusoidal O2 profile does not conform to zero-order O2 uptake in the liver. Because of extensive NAD+ reduction, ethanol increases the thermodynamic driving force of oxidative phosphorylation, and it also increased the oxygen consumption in both the perfused liver and the hepatocyte suspension, but had no effect on the grade of steady-state cytochrome aa3 reduction, the cellular energy state [ATP]/[ADP].[Pi], or the Km of cytochrome aa3 for oxygen. The results indicate that hepatic energy metabolism is oxygen independent at very low O2 concentrations, but that the sinusoidal axial O2 concentration is anomalous, probably due to the spatial arrangement of the metabolizing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号