首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A-kinase Anchoring Proteins (AKAPs) define an expanding group of scaffold proteins that display a signature binding site for the RI/RII subunit of protein kinase A. AKAP5 and AKAP12 are multivalent (with respect to protein kinases and phosphatases) and display the ability to associate with the prototypic member of G protein-coupled receptors, the beta(2)-adrenergic receptor. We probed the relative abundance, subcellular distribution and localization of AKAP5 and AKAP12 in human embryonic kidney HEK293 and epidermoid carcinoma A431 cells. HEK293 cells are relatively rich in AKAP5 (found mostly in association with the cell membrane); whereas A431 cells are rich in AKAP12 (found distributed both in the cytoplasm and in association with the cell membrane). In biochemical analysis of subcellular fractions and in whole-cell imaging, the membrane localization of AKAP5 was decreased in response to treating cells with the beta-adrenergic agonist isoproterenol, whereas membrane association of AKAP12 was increased initially in response to agonist treatment. These data demonstrate quantitatively a clearly different pattern of AKAP-receptor association for AKAP5 versus AKAP12. AKAP5 remains associated with its G-protein-coupled receptor, at the cell membrane, docked with the receptor during agonist-induced internalization and later receptor recycling after agonist wash-out. AKAP12-receptor docking, in contrast, is dynamic, driven by agonist stimulation (accounting for movement of AKAP12 from the cytoplasm to the cell membrane). AKAP12 then is internalized with the beta(2)-adrenergic receptor, but segregates away from the G-protein-coupled receptor upon recycling of the internalized receptor to the cell membrane. Thus these homologous, AKAPs that dock G-protein-coupled receptors have markedly different patterns of trafficking, docking, and re-distribution.  相似文献   

2.
A-kinase anchoring proteins (AKAPs) are adapter proteins that are involved in directing cAMP-dependent protein kinase and some other signaling enzymes to certain intracellular locations. In this study, we investigate the domain architecture of an AKAP from Caenorhabditis elegans (AKAP(CE)). We show that AKAP(CE) shares two domains with the Smad anchor for receptor activation, a FYVE-finger and a transforming growth factor beta (TGFbeta) receptor binding domain, suggesting that AKAP(CE) may interact with a receptor belonging to the TGFbeta receptor family. This predicted novel AKAP function supports the recent view of AKAPs as adapter proteins that can be involved in various signaling pathways.  相似文献   

3.
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.  相似文献   

4.
Accurate calcium signaling requires spatial and temporal coordination of voltage-gated calcium channels (VGCCs) and a variety of signal transduction proteins. Accordingly, regulation of L-type VGCCs involves the assembly of complexes that include the channel subunits, protein kinase A (PKA), protein kinase A anchoring proteins (AKAPs), and beta2-adrenergic receptors, although the molecular details underlying these interactions remain enigmatic. We show here, by combining extracellular epitope splicing into the channel pore-forming subunit and immunoassays with whole cell and single channel electrophysiological recordings, that AKAP79 directly regulates cell surface expression of L-type calcium channels independently of PKA. This regulation involves a short polyproline sequence contained specifically within the II-III cytoplasmic loop of the channel. Thus we propose a novel mechanism whereby AKAP79 and L-type VGCCs function as components of a biosynthetic mechanism that favors membrane incorporation of organized molecular complexes in a manner that is independent of PKA phosphorylation events.  相似文献   

5.
Tao J  Wang HY  Malbon CC 《The EMBO journal》2003,22(24):6419-6429
A-kinase-anchoring protein 250 (AKAP250; gravin) acts as a scaffold that binds protein kinase A (PKA), protein kinase C and protein phosphatases, associating reversibly with the beta(2)-adrenergic receptor. The receptor-binding domain of the scaffold and the regulation of the receptor-scaffold association was revealed through mutagenesis and biochemical analyses. The AKAP domain found in other members of this superfamily is essential for the scaffold-receptor interactions. Gravin constructs lacking the AKAP domain displayed no binding to the receptor. Metabolic labeling studies in vivo demonstrate agonist-stimulated phosphorylation of gravin and enhanced gravin-receptor association. Analysis of the AKAP domain revealed two canonical PKA sites phosphorylated in response to elevated cAMP, blocked by PKA inhibitor, and essential for scaffold-receptor association and for resensitization of the receptor. The AKAP appears to provide the catalytic PKA activity responsible for phosphorylation of the scaffold in response to agonist activation of the receptor as well as for the association of the scaffold with the receptor, a step critical to receptor resensitization.  相似文献   

6.
A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.  相似文献   

7.
Resensitization of G protein-coupled receptors (GPCR) following prolonged agonist exposure is critical for restoring the responsiveness of the receptor to subsequent challenges by agonist. The 3'-5' cyclic AMP-dependent protein kinase (PKA) and serine 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) were both necessary for efficient recycling and resensitization of the agonist-internalized beta(1)-AR (Gardner, L. A., Delos Santos, N. M., Matta, S. G., Whitt, M. A., and Bahouth, S. W. (2004) J. Biol. Chem. 279, 21135-21143). Because PKA is compartmentalized near target substrates by interacting with protein kinase A anchoring proteins (AKAPs), the present study was undertaken to identify the AKAP involved in PKA-mediated phosphorylation of the beta(1)-AR and in its recycling and resensitization. Here, we report that Ht-31 peptide-mediated disruption of PKA/AKAP interactions prevented the recycling and functional resensitization of heterologously expressed beta(1)-AR in HEK-293 cells and endogenously expressed beta(1)-AR in SK-N-MC cells and neonatal rat cortical neurons. Whereas several endogenous AKAPs were identified in HEK-293 cells, small interfering RNA-mediated down-regulation of AKAP79 prevented the recycling of the beta(1)-AR in this cell line. Co-immunoprecipitations and fluorescence resonance energy transfer (FRET) microscopy experiments in HEK-293 cells revealed that the beta(1)-AR, AKAP79, and PKA form a ternary complex at the carboxyl terminus of the beta(1)-AR. This complex was involved in PKA-mediated phosphorylation of the third intracellular loop of the beta(1)-AR because disruption of PKA/AKAP interactions or small interfering RNA-mediated down-regulation of AKAP79 both inhibited this response. Thus, AKAP79 provides PKA to phosphorylate the beta(1)-AR and thereby dictate the recycling and resensitization itineraries of the beta(1)-AR.  相似文献   

8.
Rhim JH  Jang IS  Yeo EJ  Song KY  Park SC 《Aging cell》2006,5(6):451-461
Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs alpha/beta both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gialpha in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC alpha/beta and AC4/6.  相似文献   

9.
10.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

11.
Phosphorylation of G-protein-coupled receptors by second-messenger-stimulated kinases is central to the process of receptor desensitization [1-3]. Phosphorylation of the beta(2)-adrenergic receptor (beta(2)-AR) by protein kinase A (PKA), in addition to uncoupling adenylate cyclase activation, is obligatory for receptor-mediated activation of mitogen-activated protein kinase (MAP kinase) cascades [4] [5]. Although mechanisms for linking G-protein-coupled receptor kinases to the activated receptor are well established, analogous mechanisms for targeting second messenger kinases to the beta(2)-AR at the plasma membrane have not been elucidated. Here we show that the A-kinase-anchoring protein, AKAP79/150, co-precipitates with the beta(2)-AR in cell and tissue extracts, nucleating a signaling complex that includes PKA, protein kinase C (PKC) and protein phosphatase PP2B. The anchoring protein directly and constitutively interacts with the beta(2)-AR and promotes receptor phosphorylation following agonist stimulation. Functional studies show that PKA anchoring is required to enhance beta(2)-AR phosphorylation and to facilitate downstream activation of the MAP kinase pathway. This defines a role for AKAP79/150 in the recruitment of second-messenger-regulated signaling enzymes to a G-protein-coupled receptor.  相似文献   

12.
Agonist-induced desensitization and resensitization of G-protein-linked receptors involve the interaction of receptors with protein kinases, phosphatases, beta-arrestin, and clathrin organized by at least one scaffold protein. The dynamic composition of the signaling complexes and the role of the scaffold protein AKAP250 (gravin) in agonist-induced attenuation and recovery of beta-adrenergic receptors were explored by co-immunoprecipitation of target elements, antisense suppression, and confocal microscopy. Gravin associated with unstimulated receptor, and the association was increased significantly after agonist stimulation for up to 60 min. Agonist stimulation also induced a robust association of the receptor-gravin complex with protein kinases A and C, G-protein-linked receptor kinase-2, beta-arrestin, and clathrin. Confocal microscopy of the green fluorescence protein-tagged beta(2)-adrenergic receptor showed that the receptor underwent sequestration after agonist stimulation. Suppression of gravin expression via antisense oligodeoxynucleotides disrupted agonist-induced association of the receptor with G-protein-linked receptor kinase-2, beta-arrestin, and clathrin as well as receptor recovery from desensitization. Gravin deficiency also inhibited agonist-induced sequestration. These data reveal that gravin-mediated formation of signaling complexes with protein kinases/phosphatases, beta-arrestin, and clathrin is essential in agonist-induced internalization and resensitization of G-protein-linked receptors.  相似文献   

13.
The cAMP-dependent protein kinase (PKA) is localized to specific subcellular compartments by association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of functionally related proteins that bind the regulatory (R) subunit of PKA with high affinity and target the kinase to specific subcellular organelles. Recently, AKAP18, a low molecular weight plasma membrane AKAP that facilitates PKA-mediated phosphorylation of the L-type Ca(2+) channel, was cloned. We now report the cloning of two additional isoforms of AKAP18, which we have designated AKAP18beta and AKAP18gamma, that arise from alternative mRNA splicing. The AKAP18 isoforms share a common R subunit binding site, but have distinct targeting domains. The original AKAP18 (renamed AKAP18alpha) and AKAP18beta target the plasma membrane when expressed in HEK-293 cells, while AKAP18gamma is cytosolic. When expressed in epithelial cells, AKAP18alpha is targeted to lateral membranes, whereas AKAP18beta is accumulated at the apical membrane. A 23-amino acid insert, following the plasma membrane targeting domain, facilitates the association of AKAP18beta with the apical membrane. The data suggest that AKAP18 isoforms are differentially targeted to modulate distinct intracellular signaling events. Furthermore, the data suggest that plasma membrane AKAPs may be targeted to subdomains of the cell surface, adding additional specificity in intracellular signaling.  相似文献   

14.

Background

A-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize.

Results

In gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single "domain" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies.

Conclusion

Both AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.  相似文献   

15.
Cellular function involves the concerted action of signal transduction enzymes. Restriction of enzyme location contributes to the fidelity of each cellular response. A kinase-anchoring proteins (AKAPs) target the cAMP-dependent protein kinase and other signalling enzymes to defined subcellular locations. We have developed a new strategy that combines RNA interference of the endogenous protein and replacement with AKAP79/150 forms unable to anchor selected binding partners. Using this approach we show that AKAP79/150 coordinates different enzyme combinations to modulate the activity of two distinct neuronal ion channels: AMPA-type glutamate receptors and M-type potassium channels. Utilization of distinct enzyme combinations in this manner provides a means to expand the repertoire of cellular events that the same AKAP modulates.  相似文献   

16.
PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.  相似文献   

17.
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD–2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.  相似文献   

18.
A型激酶锚定蛋白(A-kinase anchoring proteins,AKAPs)是一类结构不同而功能相关的蛋白家族,其主要功能是将cAMP依赖性蛋白激酶A(PKA)锚定于特定的亚细胞结构.PKA是第二信使cAMP的主要效应器,而AKAPs在靶向定位和调节PKA介导的磷酸化事件方面扮演重要角色. AKAPs更为重要的功能是与多种信号分子形成信号复合物,从时间和空间上整合cAMP-PKA和其他信号途径.本文将对AKAPs及其信号复合物的结构特点和参与细胞信号转导的功能机制及其研究现状进行概述.  相似文献   

19.
cAMP-dependent protein kinase is targeted to discrete subcellular locations by a family of specific anchor proteins (A-kinase anchor proteins, AKAPs). Localization recruits protein kinase A (PKA) holoenzyme close to its substrate/effector proteins, directing and amplifying the biological effects of cAMP signaling.AKAPs include two conserved structural modules: (i) a targeting domain that serves as a scaffold and membrane anchor; and (ii) a tethering domain that interacts with PKA regulatory subunits. Alternative splicing can shuffle targeting and tethering domains to generate a variety of AKAPs with different targeting specificity. Although AKAPs have been identified on the basis of their interaction with PKA, they also bind other signaling molecules, mainly phosphatases and kinases, that regulate AKAP targeting and activate other signal transduction pathways.We suggest that AKAP forms a "transduceosome" by acting as an autonomous multivalent scaffold that assembles and integrates signals derived from multiple pathways. The transduceosome amplifies cAMP and other signals locally and, by stabilizing and reducing the basal activity of PKA, it also exerts long-distance effects. The AKAP transduceosome thus optimizes the amplitude and the signal/noise ratio of cAMP-PKA stimuli travelling from the membrane to the nucleus and other subcellular compartments.  相似文献   

20.
The A kinase-anchoring protein AKAP79/150 is a postsynaptic scaffold molecule and a key regulator of signaling events. At the postsynapse it coordinates phosphorylation and dephosphorylation of receptors via anchoring kinases and phosphatases near their substrates. Interactions between AKAP79 and two Ca(2+) -binding proteins caldendrin and calmodulin have been investigated here. Calmodulin is a known interaction partner of AKAP79/150 that has been shown to regulate activity of the kinase PKC in a Ca(2+) -dependent manner. Pull-down experiments and surface plasmon resonance biosensor analyses have been used here to demonstrate that AKAP79 can also interact with caldendrin, a neuronal calcium-binding protein implicated in regulation of Ca(2+) -influx and release. We demonstrate that calmodulin and caldendrin compete for a partially overlapping binding site on AKAP79 and that their binding is differentially dependent on calcium. Therefore, this competition is regulated by calcium levels. Moreover, both proteins have different binding characteristics suggesting that the two proteins might play complementary roles. The postsynaptic enrichment, the complex binding mechanism, and the competition with calmodulin, makes caldendrin an interesting novel player in the signaling toolkit of the AKAP interactome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号