首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols.  相似文献   

2.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

3.
Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively.  相似文献   

4.
5.
Sphingomonas yanoikuyae strain B1 is able to degrade a wider range of aromatic hydrocarbons than S. paucimobilis strain TNE12 can degrade. Various culture techniques were used to corroborate that B1 used m-xylene, biphenyl, toluene, naphthalene, and phenanthrene as sole carbon and energy sources. In contrast, TNE12 could not mineralize m-xylene, biphenyl, toluene, or naphthalene. However, fluoranthene served as carbon and energy source for TNE12 but not B1. Southern blots were performed using the cloned genomic region (approximately 23 kb) containing the degradative genes for the upstream pathways for biphenyl and m-xylene and a TOL plasmid-type meta operon from B1 as a probe against the Kpn I restriction-digested total DNA of TNE12. This 23 kb probe hybridized to three Kpn I-digested fragments of TNE12 DNA; thus significant homology existed between the aromatic hydrocarbon-degrading genes of B1 and TNE12. Further work with smaller probes revealed, however, that TNE12 DNA fragments did not hybridize with the probe containing the genes encoding for xylene monooxygenase and part of an aromatic dioxygenase. A recombinant plasmid, which contains only the genes for xylene monooxygenase, is able to complement TNE12 on m-xylene. These genes are, therefore, probably missing from TNE12. Hence, TNE12 cannot use monocylclic aromatics whereas B1 can. Pulsed field gel electrophoresis coupled with Southern blotting revealed that the aromatic degradative genes were on an approximately 240 kb plasmid of TNE12; the same genes in B1 are known to be chromosomal.  相似文献   

6.
7.
Sphingomonas yanoikuyae B1 is able to grow on a wide variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. In addition, the initial enzymes for degradation of biphenyl have the ability to metabolize a wide variety of different polycyclic aromatic hydrocarbons. The catabolic pathways for the degradation of both the monocyclic and polycyclic aromatic hydrocarbons are intertwined, joining together at the level of (methyl)benzoate and catechol. Both upper branches of the catabolic pathways are induced when S. yanoikuyae B1 is grown on either class of compound. An analysis of the genes involved in the degradation of these aromatic compounds reveals that at least six operons are involved. The genes are not arranged in discrete pathway units but are combined in groups with genes for the degradation of both classes of compounds in the same operon. Genes for multiple dioxygenases are present perhaps explaining the ability of S. yanoikuyae B1 to grow on a wide variety of aromatic compounds. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

8.
Rhodococcus sp. strain DK17 was isolated from soil and analyzed for the ability to grow on o-xylene as the sole carbon and energy source. Although DK17 cannot grow on m- and p-xylene, it is capable of growth on benzene, phenol, toluene, ethylbenzene, isopropylbenzene, and other alkylbenzene isomers. One UV-generated mutant strain, DK176, simultaneously lost the ability to grow on o-xylene, ethylbenzene, isopropylbenzene, toluene, and benzene, although it could still grow on phenol. The mutant strain was also unable to oxidize indole to indigo following growth in the presence of o-xylene. This observation suggests the loss of an oxygenase that is involved in the initial oxidation of the (alkyl)benzenes tested. Another mutant strain, DK180, isolated for the inability to grow on o-xylene, retained the ability to grow on benzene but was unable to grow on alkylbenzenes due to loss of a meta-cleavage dioxygenase needed for metabolism of methyl-substituted catechols. Further experiments showed that DK180 as well as the wild-type strain DK17 have an ortho-cleavage pathway which is specifically induced by benzene but not by o-xylene. These results indicate that DK17 possesses two different ring-cleavage pathways for the degradation of aromatic compounds, although the initial oxidation reactions may be catalyzed by a common oxygenase. Gas chromatography-mass spectrometry and 300-MHz proton nuclear magnetic resonance spectrometry clearly show that DK180 accumulates 3,4-dimethylcatechol from o-xylene and both 3- and 4-methylcatechol from toluene. This means that there are two initial routes of oxidation of toluene by the strain. Pulsed-field gel electrophoresis analysis demonstrated the presence of two large megaplasmids in the wild-type strain DK17, one of which (pDK2) was lost in the mutant strain DK176. Since several other independently derived mutant strains unable to grow on alkylbenzenes are also missing pDK2, the genes encoding the initial steps in alkylbenzene metabolism (but not phenol metabolism) appear to be present on this approximately 330-kb plasmid.  相似文献   

9.
Catechol 2,3-dioxygenase (C23O), an extradiol-type dioxygenase cleaving the aromatic C—C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxy-muconic semialdehyde. Based on a curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from Pseudomonas aeruginosa ZD 4-3, which was able to degrade both single and bicyclic compounds via a meta-cleavage path-way. A complete nucleotide sequence analysis of the C23O revealed that it has one ORF, which showed a strong overall amino acid similarity to the known gram-negative bacterial mesophilic C23Os. The alignment analysis indicated a distinct difference between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases that cleave bicyclic aromatic compounds. The heterogeneous expression of the pheB gene in E. Coli BL21(DE3) demonstrated that this C23O possesses a meta-cleavage activity.From Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 802–809.Original English Text Copyright © 2004 by Chen, Liu, Zhu, Jin.This article was submitted by the authors in English.  相似文献   

10.
Escherichia coli cells expressing Rhodococcus DK17 o-xylene dioxygenase genes were used for bioconversion of m-xylene. Gas chromatography–mass spectrometry analysis of the oxidation products detected 3-methylbenzylalcohol and 2,4-dimethylphenol in the ratio 9:1. Molecular modeling suggests that o-xylene dioxygenase can hold xylene isomers at a kink region between α6 and α7 helices of the active site and α9 helix covers the substrates. m-Xylene is unlikely to locate at the active site with a methyl group facing the kink region because this configuration would not fit within the substrate-binding pocket. The m-xylene molecule can flip horizontally to expose the meta-position methyl group to the catalytic motif. In this configuration, 3-methylbenzylalcohol could be formed, presumably due to the meta effect. Alternatively, the m-xylene molecule can rotate counterclockwise, allowing the catalytic motif to hydroxylate at C-4 yielding 2,4-dimethylphenol. Site-directed mutagenesis combined with structural and functional analyses suggests that the alanine-218 and the aspartic acid-262 in the α7 and the α9 helices play an important role in positioning m-xylene, respectively.  相似文献   

11.
Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl and polychlorinated biphenyls. Previously, we constructed chimeric versions of the bphA1 gene, which encodes a large subunit of biphenyl dioxygenase, by using DNA shuffling between bphA1 genes from P. pseudoalcaligenes KF707 and Burkholderia xenovorans LB400. In this study, we demonstrate replacement of the bphA1 gene with chimeric bphA1 sequence within the chromosomal bph gene cluster by two-step homologous recombination. Notably, some of the hybrid strains acquired enhanced and/or expanded degradation capabilities for specific aromatic compounds, including single aromatic hydrocarbons and polychlorinated biphenyls.  相似文献   

12.
Sphingobium yanoikuyae B1 initiates the catabolism of biphenyl by adding dioxygen to the aromatic nucleus to form (+)-cis-(2R, 3S)-dihydroxy-1-phenylcyclohexa-4,6-diene. The present study focuses on the biphenyl 2,3-dioxygenase system, which catalyzes the dioxygenation reaction. This enzyme has been shown to have a broad substrate range, catalyzing the dioxygenation of not only biphenyl, but also three- and four-ring polycyclic aromatic hydrocarbons. Extracts prepared from biphenyl-grown B1 cells contained three protein components that were required for the oxidation of biphenyl. The genes encoding the three components (bphA4, bphA3 and bphA1f,A2f) were expressed in Escherichia coli. Biotransformations of biphenyl, naphthalene, phenanthrene, and benzo[a]pyrene as substrates using the recombinant E. coli strain resulted in the formation of the expected cis-dihydrodiol products previously shown to be produced by biphenyl-induced strain B1. The three protein components were purified to apparent homogeneity and characterized in detail. The reductase component (bphA4), designated reductase(BPH-B1), was a 43 kD monomer containing one mol FAD/mol reductase(BPH-B1). The ferredoxin component (bphA3), designated ferredoxin(BPH-B1), was a 12 kD monomer containing approximately 2 g-atoms each of iron and acid-labile sulfur. The oxygenase component (bphA1f,A2f), designated oxygenase(BPH-B1), was a 217 kD heterotrimer consisting of alpha and beta subunits (approximately 51 and 21 kD, respectively). The iron and acid-labile sulfur contents of oxygenase(BPH-B1) per alphabeta were 2.4 and 1.8 g-atom per mol, respectively. Reduced ferredoxin(BPH-B1) and oxygenase(BPH-B1) each gave EPR signals typical of Rieske [2Fe-2S] proteins. Crystals of reductase(BPH-B1), ferredoxin(BPH-B1) and oxygenase(BPH-B1 )diffracted to 2.5 A, 2.0 A and 1.75 A, respectively. The structures of the three proteins are currently being determined.  相似文献   

13.
Summary Toluate 1,2-dioxygenase is the first enzyme of a meta-cleavage pathway for the oxidative catabolism of benzoate and substituted benzoates to Krebs cycle intermediates that is specified by TOL plasmid pWW0 of Pseudomonas putida. A collection of derivatives harbouring Tn1000 insertions and defective in toluate dioxygenase have been isolated from pPL392, a pBR322-based hybrid plasmid carrying the TOL plasmid meta-cleavage pathway operon. In parallel, a series of N-methyl-N-nitro-N-nitrosoguanidine-induced mutant plasmids defective in this enzyme activity were isolated from pNM72, a pKT231-based hybrid plasmid carrying the same operon. Pairs of mutant plasmids, consisting of one Tn1000 derivative and one nitrosoguanidine-induced derivative, were used for complementation analysis of toluate dioxygenase in Escherichia coli recA bacteria, in which the formation of 2-hydroxymuconic semialdehyde from benzoate was examined. Four cistrons for toluate 1,2-dioxygenase were thus identified. DNA fragments containing nitrosoguanidine-induced mutant cistrons plus the other meta-cleavage operon genes were cloned into pOT5, an R388-based vector, and complementation tests between different nitrosoguanidine-induced mutant cistrons were carried out in Pseudomonas putida cells, this time scoring for growth on p-toluate. This analysis also identified four cistrons. Examination of the products of these cistrons, by means of E. coli minicells containing pPL392 or its Tn1000 insertion derivatives, indicated that the first two cistrons of the operon comprise a single gene, xylX, which encodes a 57 kilodalton protein, and that the third cistron, xy/Y, encodes a 20 kilodalton protein.  相似文献   

14.
Xia Y  Min H  Rao G  Lv ZM  Liu J  Ye YF  Duan XJ 《Biodegradation》2005,16(5):393-402
Phenanthrene-degrading bacterium strain ZX4 was isolated from an oil-contaminated soil, and identified as Sphingomonas paucimobilis based on 16S rDNA sequence, cellular fatty acid composition, mol% G + C and Biolog-GN tests. Besides phenanthrene, strain ZX4 could also utilize naphthalene, fluorene and other aromatic compounds. The growth on salicylic acid and catechol showed that the strain degraded phenanthrene via salicylate pathway, while the assay of catechol 2, 3-dioxygenase revealed catechol could be metabolized through meta-cleavage pathway. Three genes, including two of meta-cleavage operon genes and one of GST encoding gene were obtained. The order of genes arrangement was similar to S-type meta-pathway operons. The phylogenetic trees based on 16S rDNA sequence and meta-pathway gene both revealed that strain ZX4 is clustered with strains from genus Sphingomonas.  相似文献   

15.
Genetic organization of a plasmid from an industrial wastewater bioreactor   总被引:1,自引:0,他引:1  
Pseudomonas strain CT14 was isolated from activated sludge. Strain CT14 contained a 55, 216 bp plasmid that was characterized by sequence analysis. The plasmid had a modular structure with 51 open reading frames (ORFs) that were distributed between two clearly demarcated domains. Domain I primarily contained genes for plasmid-related functions and a novel origin of replication. Domain II bore evidence of extensive transposition and recombination. Domain II contained several genes from a meta-cleavage pathway for aromatic rings. These genes appeared to have been recruited from different hosts. This observation suggests that sequencing pCT14 may have revealed an intermediate stage in the evolution of a new assemblage of meta-cleavage pathway genes.  相似文献   

16.
17.
Bacterial isolates from soils contaminated with (chlorinated) aromatic compounds, which degraded biphenyl/chlorinated biphenyls (CB) and belonged to the genera Rhodococcus and Pseudomonas, were studied. Analysis of the 16S rRNA gene sequences was used to determine the phylogenetic position of the isolates. The Rhodococcus cells were found to contain plasmids of high molecular mass (220–680 kbp). PCR screening for the presence of the bphA1 gene, a marker indicating the possibility for induction of 2,3-dioxygenase (biphenyl/toluene dioxygenase subfamily), revealed the presence of the bphA1 genes with 99–100% similarity to the homologous genes of bacteria of the relevant species in all pseudomonad and most Rhodococcus isolates. A unique bphA1 gene, which had not been previously reported for the genus, was identified in Rhodococcus sp. G10. The absence of specific amplification of the bphA1 genes in some biphenyl-degrading bacteria (Rhodococcus sp. B7b, B106a, G12a, P2kr, P2(51), and P2m), as well as in an active biphenyl degrader Rhodococcus ruber P25, indicated the absence of the genes encoding the proteins of the biphenyl/toluene dioxygenase subfamily and participation of the enzymes other than this protein family in biphenyl/CB degradation.  相似文献   

18.
Useful genes can be screened from various environments by construction of metagenomic DNA libraries. In this study, water samples were collected from several lakes in mid Korea, and analyzed by T-RFLP to examine diversities of the microbial communities. The crude DNAs were extracted by the SDS-based freezing-thawing method, and then further purified using an UltraCleanTM kit (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested withEcoR I,BamH I, andSac II inEscherichia coli DH 10B using the pBACe3.6 vector. About 44.0 Mb of metagenomic libraries were obtained with average inserts 13∼15 kb in size. ThebphC genes responsible for degradation of aromatic hydrocarbons viameta-cleavage were identified from the metagenomic libraries by colony hybridization using thebphC specific sequence as a probe. The 2,3-dihydroxybiphenyl (2,3-DHBP) dioxygenase gene (bphC), capable of degradation of 2,3-DHBP, was cloned and its nucleotide sequences analyzed. The genes consisted of 966 and 897 base pairs with an ATG initiation codon and a TGA termination codon. The activity of the 2,3-DHBP dioxygenase was highly expressed to 2,3-DHBP and showed a broad substrate range to 2,3-DHBP, catechol, 3-methylcatechol and 4-methylcatechol. These results indicated that thebphC gene identified from the metagenomes derived from lake water might be useful in the development of a potent strain for degradation of aromatic pollutants.  相似文献   

19.
Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived from the marine bacterium Nocardioides sp. strain KP7 converted all of these tricyclic aromatic compounds, while E. coli carrying the Pseudomonas putida F1 toluene dioxygenase (todC1C2BA) genes or the P. pseudoalcaligenes KF707 biphenyl dioxygenase (bphA1A2A3A4) genes was not able to convert these substrates. Surprisingly, E. coli carrying hybrid dioxygenase (todC1::bphA2A3A4) genes with a subunit substitution between the toluene and biphenyl dioxygenases was able to convert fluorene, dibenzofuran, and dibenzothiophene. The cells of a Streptomyces lividans transformant carrying the phenanthrene dioxygenase genes were also evaluated for bioconversion of various tricyclic fused aromatic compounds. The ability of this actinomycete in their conversion was similar to that of E. coli carrying the corresponding genes. Products converted from the aromatic compounds with these recombinant bacterial cells were purified by column chromatography on silica gel, and identified by their MS and 1H and 13C NMR analyses. Several products, e.g., 4-hydroxyfluorene converted from fluorene, and cis-1,2-dihydroxy-1,2-dihydrophenanthridine, cis-9,10-dihydroxy-9,10-di-hydrophenanthridine, and 10-hydroxyphenanthridine, which were converted from phenanthridine, were novel compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号