首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five cyclin-like genes, cig1, cig2/cyc17, mcs2, puc1 and cdc13, have been discovered in S. pombe to date. It is not yet clear what their functions are or even whether they are all involved with control of the cell cycle. Conflicting data for cig1 and cig2/cyc17 have obscured analysis of their function and cig1 remains largely uncharacterized, although clues to the role of cig2/cyc17 have emerged. There is genetic data available for the more distant cyclin homologue mcs2, which has an essential although as yet unspecified role. Puc1 may be involved in regulation of exit from the cell cycle. The first cyclin to be discovered, and the best understood, is cdc13 which with cdc2 promotes mitosis. Studies of the roles of cdc2 and cdc13 in the overall ordering of the cell cycle suggest that cdc13 and probably other cyclins are key regulators, maintaining the order of S phase and mitosis during the cell cycle.  相似文献   

2.
3.
Schizosaccharomyces pombe showed maximum pyridoxine uptake activity around 10 h after starting cultivation. High concentrations of thiamine and pyridoxine in the medium did not affect the activity or the time but changed intracellular levels of vitamin B6 compounds. Pyridoxine was taken up by a saturable mechanism with two kinds of affinity (Km 22.4 μM and 118 μM). The uptake depended on the energy produced anaerobically with an optimum pH of 4.5. The uptake was completely inhibited by amiloride, sodium azide or 2,4-dinitrophenol. The uptake system of the fission yeast was different in various respects from that of a budding yeast.  相似文献   

4.
The nuclear envelope is essential for compartmentalizing the nucleus from the cytoplasm in all eukaryotic cells. There is a tremendous flux of both RNA and proteins across the nuclear envelope, which is intact throughout the entire cell cycle of yeasts but breaks down during mitosis of animal cells. Transport across the nuclear envelope requires the recognition of cargo molecules by receptors, docking at the nuclear pore, transit through the nuclear pore, and then dissociation of the cargo from the receptor. This process depends on the RanGTPase system, transport receptors, and the nuclear pore complex. We provide an overview of the nuclear transport process, with particular emphasis on the fission yeast Schizosaccharomyces pombe, including strategies for predicting and experimentally verifying the signals that determine the sub-cellular localization of a protein of interest. We also describe a variety of reagents and experimental strategies, including the use of mutants and chemical inhibitors, to study nuclear protein import, nuclear protein export, nucleocytoplasmic protein shuttling, and mRNA export in fission yeast. The RanGTPase and its regulators also play an essential transport independent role in nuclear envelope re-assembly after mitosis in animal cells and in the maintenance of nuclear envelope integrity at mitosis in S. pombe. Several experimental strategies and reagents for studying nuclear size, nuclear shape, the localization of nuclear pores, and the integrity of the nuclear envelope in living fission yeast cells are described.  相似文献   

5.
In an effort to produce ricinoleic acid (12-hydroxy-octadeca-cis-9-enoic acid: C18:1-OH) as a petrochemical replacement in a variety of industrial processes, we introduced Claviceps purpurea oleate ?12-hydroxylase gene (CpFAH12) to Schizosaccharomyces pombe, putting it under the control of inducible nmt1 promoter. Since Fah12p is able to convert oleic acid to ricinoleic acid, we thought that S. pombe, in which around 75% of total fatty acid (FA) is oleic acid, would accordingly be an ideal microorganism for high production of ricinoleic acid. Unfortunately, at the normal growth temperature of 30 °C, S. pombe cells harboring CpFAH12 grew poorly when the CpFAH12 gene expression was induced, perhaps implicating ricinoleic acid as toxic in S. pombe. However, in line with a likely thermoinstability of Fah12p, there was almost no growth inhibition at 37 °C or, by contrast with 30 °C and lower temperatures, ricinoleic acid accumulation. Accordingly, various optimization steps led to a regime with preliminary growth at 37 °C followed by a 5-day incubation at 20 °C, and the level of ricinoleic acid reached 137.4 μg/ml of culture that corresponded to 52.6% of total FA.  相似文献   

6.
DNA synthesis in the fission yeast Schizosaccharomyces pombe   总被引:15,自引:0,他引:15  
  相似文献   

7.
Conjugation between two haploid yeast cells is generally controlled by the reciprocal action of diffusible mating pheromones, cells of each mating type releasing pheromones that induce mating-specific changes in cells of the opposite type. Recent studies into pheromone signalling in the fission yeast Schizosaccharomyces pombe have revealed significant parallels with processes in higher eukaryotes and could provide the opportunity for investigating communication in an organism that is amenable to both biochemical and genetic manipulation.  相似文献   

8.
9.
10.
Systems of L-lysine transport in Schizosaccharomyces pombe are not constitutive, as at no phase of growth in a rich medium is lysine taken up. Transport activity appears only after preincubation of harvested cells with glucose or another suitable source of energy. If cycloheximide is added during this preincubation no transport systems are synthesized. After removal of glucose, the activity of the transport system decays with a half-time of 13 min. The transport of L-lysine into S. pombe cells from the stationary phase of growth preincubated for 60 min with 1% D-glucose is mediated by at least two systems, the high-affinity one with a Kt of 26 mumol/l and Jmax of 4.95 nmol/min per mg dry wt., the low-affinity one with a KT of 1.1 mmol/l and Jmax of 11.8 nmol/min per mg dry wt. The transport of lysine mediated by these two systems proceeds uphill. The high-affinity system has a pH optimum at 4.0-4.2, the accumulation ratio is highest at a cell density 2-5 mg dry wt. per ml and decreases with increasing lysine concentrations. Lysine accumulated by this system does not exit from cells. The only potent competitive inhibitors are L-arginine, L-histidine and D-lysine. The other amino acids tested do not behave as competitive inhibitors. Of the various metabolic inhibitors tested, the most potent were proton conductors and antimycin A.  相似文献   

11.
Yeasts have proven to be invaluable, genetically tractable systems to study various fundamental biological processes including programmed cell death. Recent advances in the elucidation of the molecular pathways underlying apoptotic cell death in yeasts have revealed remarkable similarities to mammalian apoptosis at cellular, organelle and macromolecular levels, thus making a strong case for the relevance of yeast models of regulated cell death. Programmed cell death has been reported in fission yeast Schizosaccharomyces pombe, primarily in the contexts of perturbed intracellular lipid metabolism, defective DNA replication, improper mitotic entry, chronological and replicative aging. Here we review the current understanding of the programmed cell death in fission yeast, paying particular attention to lipid-induced cell death. We discuss our recent findings that fission yeast exhibits plasticity of apoptotic and non-apoptotic modes of cell death in response to different lipid stimuli and growth conditions, and that mitochondria, reactive oxygen species and novel cell death mediators including metacaspase Pca1, SpRad9 and Pck1 are involved in the lipotoxic cell death. We also present perspectives on how various aspects of the cell and molecular biology of this organism can be explored to shed light on the governing principles underlying lipid-mediated signaling and cell demise.  相似文献   

12.
13.
14.
《The Journal of cell biology》1989,109(6):2693-2702
A membrane-associated galactosyltransferase has been purified to homogeneity from the fission yeast, Schizosaccharomyces pombe. The enzyme has a molecular weight of 61,000 and is capable of transfering galactose from UDP-galactose (UDP-Gal) to a variety of mannose-based acceptors to form an alpha-1,2 galactosyl mannoside linkage. Immunofluorescence localization of the protein is consistent with the presence of the enzyme in the Golgi apparatus of S. pombe. This, together with the presence of terminal, alpha-linked galactose on the N- linked oligosaccharides of S. pombe secretory proteins, suggests that the galactosyltransferase is an enzyme involved in the processing of glycoproteins transported through the Golgi apparatus in fission yeast.  相似文献   

15.
Yeasts being simple eukaryotes are established genetic systems that are often employed to solve important biological questions. Recently, it has become evident that certain cell death programs exist in these unicellular organisms. For example, it has been shown recently that strains of the fission yeast Schizosaccharomyces pombe deficient in triacylglycerol synthesis undergo cell death with prominent apoptotic markers. This minireview is intended to discuss key developments that have rendered fission yeast useful both as a tool and as a model for apoptosis and lipoapoptosis research. It is attempted to delineate a putative signaling pathway leading to the execution of lipoapoptosis in the fission yeast. Although in its infancy, apoptosis research in the fission yeast promises exciting breakthroughs in the near future.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe was cultivated in a chemostat at dilution rates of D = 0.03, 0.05, 0.10, and 0.20 h(-1). After steady state had been reached, the amount of dry matter, number of cells, concentration of residual sugar, yield coefficient (Y), and some morphological properties of the cells were estimated. Curves reflecting the dry mass, number of cells, and cell mean volume show a changing coordination between the growth rate and the rate of cell division, with respect to D. In addition, it could be concluded that in dividing cells the cell septum is localized asymmetrically; Two nonidentical cells differing both in length and volume result. The degree of asymmetry is a function of the dilution rate.  相似文献   

17.
Glutamine synthetase (GS) activity of Schizosaccharomyces pombe 972 was high in ammonia-limited cultures, low in phosphate-and sulphate-limited cultures and not detected in glucose-limited cultures. When ammonia was pulsed into an ammonia-limited culture then GS activity decreased at a rate faster than that calculated if enzyme synthesis ceased and enzyme was diluted out by growth. Enzyme activity increased in ammonia-starved, phosphate-limited cultures and in the ammonia pulse system when the added ammonia had been utilised. These increases in enzyme activity were prevented by the presence of 100 g/ml cycloheximide. GS activity was inversely related to the intracellular concentration of glutamate.Abbreviations Gs Glutamine synthetase, EC 6.3.1.2 - GOGAT Glutamine: 2-oxo-glutarate amino transferase, EC 2.6.1.53 - GDH Glutamate dehydrogenase, EC 1.4.1.3  相似文献   

18.
19.
Mutants of the fission yeast Schizosaccharomyces pombe which are sensitive to UV and/or γ-irradiation have been assigned to 23 complementation groups, which can be assigned to three phenotypic groups. We have cloned genes which correct the deficiency in mutants corresponding to 12 of the complementation groups. Three genes in the excision-repair pathway have a high degree of sequence conservation with excision-repair genes from the evolutionarily distant budding yeast Saccharomyces cerevisiae. In contrast, those genes in the recombination repair pathway which have been characterised so far, show little homology with any previously characterised genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号