首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A key factor in the characterization of peptide transmitters used in neuronal signaling is the correct elucidation of post-translational modifications, especially as they are often required to confer biological activity. A rare carboxylation modification is described on the D-peptide from the insulin prohormone in the sea slug, Aplysia californica. Using liquid chromatography purification coupled with electrospray ionization and nanoelectrospray ionization-ion trap-mass spectrometry (ESI- and nanoESI-MS), the presence of this D-peptide within Aplysia insulin (AI)-producing neurons is confirmed. Further detailed mass spectrometric analyses demonstrate that the Aplysia insulin D-peptide is carboxylated on the single glutamate residue within the sequence. This gamma-carboxy D-peptide, along with other identified AI-related peptides, is secreted from the central nervous system in response to ionophore stimulation, thus suggesting a signaling role within the nervous system. Although carboxylated peptides have been described previously, the Aplysia gamma-carboxy D-peptide appears to be the first reported carboxylated neuropeptide.  相似文献   

2.
3.
Abstract: The peptide neurotransmitter Phe-Met-Arg-PheNH2 (FMRFamide) increases outward K+ currents and promotes dephosphorylation of many phosphoproteins in Aplysia sensory neurons. We examined FMRFamide-induced current responses in sensory neurons injected with thiophosphorylated protein phosphate inhibitor-1 and inhibitor-2 (I-1 and I-2), two structurally different vertebrate protein phosphatase-1 (PP1) inhibitors to define a role for PP1 in the physiological actions of FMRFamide. Thiophosphorylated I-1 and I-2 both reduced the amplitude of outward currents elicited by FMRFamide by 50–60% and were as effective as microcystin-LR, which inhibited both PP1 and protein phosphatase-2A in Aplysia neuronal extracts. These data suggested that of the two major neuronal protein serine/threonine phosphatases, FMRFamide utilized primarily PP1 to open serotonin-sensitive K+ (S-K+) channels. Earlier studies showed that a membrane-associated phosphatase regulated S-K+ channels in cell-free patches from sensory neurons. Utilizing its unique substrate specificity and inhibitor sensitivity, we have characterized PP1 as the principal protein phosphatase associated with neuronal plasma membranes. Two protein phosphatase activities (apparent Mr values of 170,000 and 38,000) extracted from crude membrane preparations from the Aplysia nervous system were shown to be isoforms of PP1. These biochemical and physiological studies suggest that PP1 is preferentially associated with neuronal membranes and that its activity may be required for the induction of outward K+ currents in the Aplysia sensory neurons by FMRFamide.  相似文献   

4.
In the present study, we describe the structure of the central nervous system (CNS) of the marine gastropod Bulla gouldiana, and compare it with the structure of the CNS of the related mollusc, Aplysia californica. In addition, we performed an immunohistochemical analysis of a series of peptides, and the synaptic vesicle protein, synapsin I, in the central nervous system of B. gouldiana. The most common peptide in the B. gouldiana nervous system is the molluscan cardioexcitatory peptide (FMRFamide), which is present in a significant proportion of B. gouldiana neurons. A smaller number of neurons exhibit immunoreactivity to antisera raised against the calcitonin gene related peptide, vasopressin, vasoactive intestinal peptide, cholecystokinin, galanin and enkephalin. In some instances there is colocalization of two or more peptides. Very few neurons or axons exhibit synapsin I-like immunoreactivity. The patterns of immunoreactivity to these antisera is quite similar to the patterns that have been described in other gastropods, including Lymnaea stagnalis and Aplysia californica. These observations emphasize the importance of FMRFamide-like compounds in phylogenetically old nervous systems and indicate that compounds similar to mammalian peptides are present in the gastropod. Thus, the production of a wide variety of peptide molecules and their use in neuronal function appears to be a highly conserved phylogenetic process.  相似文献   

5.
The gill withdrawal reflex is suppressed in sexually active Aplysia   总被引:1,自引:0,他引:1  
In Aplysia, the central nervous system and peripheral nervous system interact and form an integrated system that mediates adaptive gill withdrawal reflex behaviours evoked by tactile stimulation of the siphon. The central nervous system (CNS) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) in the mediation of these behaviours. We found that the CNS's suppressive control over the PNS was increased significantly in animals engaged in sexual activity as either a male or female. In control animals, the evoked gill withdrawal reflex met a minimal response amplitude criterion, while in sexually active animals the reflex did not meet this criterion. At the neuronal level, the increased CNS suppressive control was manifested as a decrease in excitatory input to the central gill motor neurons.  相似文献   

6.
Aminergic neurons have particular functions in many systems, and in this review their role is discussed and compared in three systems: those parts of the central nervous system controlling sleep and waking in the cat; the superior cervical ganglion; and the isolated nervous system of Aplysia.In the cat the aminergic neurons are most important in a waking state during which time external information is received, processed, and can be retrieved, and during which time habituation and sensitization occur. Aminergic neurons appear to have similar roles in state control in plasticity in both the Aplysianervous system and the superior cervical ganglion. The striking similarities in the role of aminergic neurons in these three systems support the speculation that aminergic neurons have uniquely important roles in regulation of the plastic properties of neurons.  相似文献   

7.
8.
Abundant expression of ras proteins in Aplysia neurons   总被引:5,自引:1,他引:4       下载免费PDF全文
We have cloned a DNA fragment from the marine mollusc Aplysia californica, which contains sequences homologous to mammalian ras genes, by screening a genomic library with a viral Ha-ras oncogene probe under conditions of low stringency hybridization. Nucleotide sequencing revealed a putative exon that encodes amino acids sharing 68% homology with residues 5 to 54 of mammalian p21ras polypeptides, and which therefore is likely to encode a ras-like Aplysia protein. The cloned locus, designated Apl-ras, is distinct from the Aplysia rho (ras-homologue) gene and appears to be more closely related to mammalian ras. We used a panel of monoclonal antibodies raised against v-Ha-ras p21 to precipitate an Mr 21,000 protein from extracts of Aplysia nervous tissue, ovotestis, and, to a much lesser degree, buccal muscle. Fluorescence immunocytochemistry revealed that ras-like protein is most abundant in neuronal cell bodies and axon processes, with staining most prominent at plasma membranes. Much less was present in other tissues. The prominence of ras protein in neurons, which are terminally differentiated and non-proliferating, indicates that the control of cell division is not the sole function of this proto-oncogene. The large identified neurons of Aplysia offer the opportunity to examine how ras protein might function in mature nerve cells.  相似文献   

9.
Abstract— The activities of aromatic amino acid decarboxylase (EC 4.1.1.26) in various ganglia, nerve trunks, and individual identifiable neurons of Aplysia culifornica were measured. The distribution of the decarboxylase enzyme is ubiquitous throughout the central nervous system of the Aplysia . Every Aplysia neuron tested contained some decarboxylase activity. The presence of this particular synthetic enzyme in an Aplysia neuron, therefore, cannot be used to classify these neurons as 'aminergic'.  相似文献   

10.
When studying the neuronal organization of the large-cell part of the red nucleus in cats by the Golgi and Golgi-Kopsch methods three types of neurons have been revealed: large (50-90 mu), medium-sized (20-50 mu) and small cells (8-20 mu). long axon and short-axon neurons were found as well as long-dendrite cells with few thorns (the length of the dendrites form 600-900 mu) and short-dendrite cells (up to 400 mu). On basis ofanalysis of neuronal groups found in the large-cell part of the red nucleus of the cat a neuronal map of this part of the central nervous sytem is composed.  相似文献   

11.
12.
The abdominal ganglion of Aplysia provides a convenient experimental system for cellular studies on the roles of peptides as chemical messengers in the nervous system. There are indications that the bag cells, a group of neuroendocrine cells, synthesize and release egg laying hormone (ELH), a peptide with an apparent molecular weight of 6000. Our recent investigations indicate that a burst of impulse activity in the bag cells produces five types of long-lasting responses, some excitatory, others inhibitory, in 26 identified neurons and 2 identified cell clusters located near the bag cells in the abdominal ganglion. The responses have slow, smoothly graded onsets, and many of them result in modulation of neuronal activity for 3 hours or more. Physiological and ultrastructural data support the hypothesis that they are induced by a bag cell hormone (or hormones) that is released into vascular and interstitial spaces of the ganglion to act on the target neurons. Local application of purified ELH to one of the target neurons provides evidence that the bag cell effect is mediated by ELH. Many of the target neurons are known to be parts of neuronal circuits that control specific behavioral and homeostatic processes. Since egg laying is initiated by the bag cell discharge and is associated with a stereotyped behavior pattern lasting several hours, the actions of these peptide-secreting neurons on the central nervous system may serve to regulate certain elements of behavior and homeostasis during egg laying.  相似文献   

13.
14.
Invertebrates have been deployed very successfully in experimental studies of the nervous system and neuromuscular junctions. Many important discoveries on axonal conduction, synaptic transmission, integrative neurobiology and behaviour have been made by investigations of these remarkable animals. Their advantages as model organisms for investigations of nervous systems include (a) the large diameter of neurons, glia and muscle cells of some invertebrates, thereby facilitating microelectrode recordings; (b) simple nervous systems with few neurons, enhancing the tractability of neuronal circuitry; and (c) well-defined behaviours, which lend themselves to physiological and genetic dissection. Genetic model organisms such as Drosophila melanogaster and Caenorhabditis elegans have provided powerful genetic approaches to central questions concerning nervous system development, learning and memory and the cellular and molecular basis of behaviour. The process of attributing function to particular gene products has been greatly accelerated in recent years with access to entire genome sequences and the application of reverse genetic (e.g. RNA interference, RNAi) and other post-genome technologies (e.g. microarrays). Studies of many other invertebrates, notably the honeybee (Apis mellifera), a nudibranch mollusc (Aplysia californica), locusts, lobsters, crabs, annelids and jellyfish have all assisted in the development of major concepts in neuroscience. The future is equally bright with ease of access to genome-wide reverse genetic technologies, and the development of optical recordings using voltage and intracellular calcium sensors genetically targeted to selected individual and groups of neurons.  相似文献   

15.
The marine mollusc Aplysia californica has proved to be a useful preparation for analyzing the development of learning and memory on both behavioral and cellular levels. An important issue in this analysis concerns the anatomical substrate upon which learning is superimposed during development. As a first step in examining this question, in the present study we have determined the number of neurons in all the major central ganglia at each stage during juvenile development, a time when several forms of learning first emerge in Aplysia. We found that a large and highly nonlinear proliferation of neurons occurs during juvenile development, with the greatest increase in cell number occurring during a specific juvenile stage: Stage 12. The neuronal proliferation is system-wide, occurring in each of the central ganglia simultaneously, suggesting the action of a general developmental signal or trigger (perhaps a hormone). Accompanying the increase in neuron number in Stage 12 there is a large increase in neuropilar volume (150-fold), which significantly increases the opportunity for synaptic interactions late in juvenile development.  相似文献   

16.
17.
The Kv2.1 gene encodes a highly conserved delayed rectifier potassium channel that is widely expressed in neurons of the central nervous system. In the bag cell neurons of Aplysia, Kv2.1 channels contribute to the repolarization of action potentials during a prolonged afterdischarge that triggers a series of reproductive behaviors. Partial inactivation of Aplysia Kv2.1 during repetitive firing produces frequency-dependent broadening of action potentials during the afterdischarge. We have now found that, as in mammalian neurons, Kv2.1 channels in bag cell neurons are localized to ring-like clusters in the plasma membrane of the soma and proximal dendrites. Either elevation of cyclic AMP levels or direct electrical stimulation of afterdischarge rapidly enhanced formation of these clusters on the somata of these neurons. In contrast, injection of a 13-amino acid peptide corresponding to a region in the C terminus that is required for clustering of Kv2.1 channels produced disassociation of the clusters, resulting in a more uniform distribution over the somata. Voltage clamp recordings demonstrated that peptide-induced dissociation of the Kv2.1 clusters is associated with an increase in the amplitude of delayed rectifier current and a shift of activation toward more negative potentials. In current clamp recording, injection of the unclustering peptide reduced the width of action potentials and reduced frequency-dependent broadening of action potentials. Our results suggest that rapid redistribution of Kv2.1 channels occurs during physiological changes in neuronal excitability.  相似文献   

18.
The neuroendocrine bag cell neurons of the marine mollusk Aplysia produce prolonged inhibition that lasts for more than 2 hr. We purified a peptide from the abdominal ganglion that mimics this inhibition. Mass spectrometry and microsequence analysis indicate that the peptide is 40 aa long and is amidated at its carboxyl terminus. It is highly homologous to vertebrate neuropeptide Y (NPY) and other members of the pancreatic polypeptide family. As determined from cloned cDNA, the gene coding for the precursor protein shares a common structural organization with genes encoding precursors of the vertebrate family. The peptides may therefore have arisen from a common ancestral gene. Bag cell neurons are immunoreactive for Aplysia NPY, and Northern blot analysis indicates that as with its vertebrate counterparts, the peptide is abundantly expressed in the CNS. This suggests that peptides related to NPY may have important functions in the nervous system of Aplysia as well as in other invertebrates.  相似文献   

19.
We have purified and characterized a galactose-binding lectin from the gonads of the mollusk Aplysia californica that modulates neurite outgrowth from cultured Aplysia neurons. Agglutination of sheep red blood cells (RBC) by this lectin, termed Aplysia gonad lectin (AGL), is inhibited strongly by galactose and to a lesser extent by fucose. On SDS-PAGE, AGL appears as a single species with a molecular weight of 34 kD under reducing conditions, and 65 kD under nonreducing conditions. This suggests that AGL is a disulfide-linked dimer in its native state. Amino terminal sequence analysis of purified AGL indicates a similarity to another galactose-binding lectin, phytohemagglutinin-E (E-PHA), found in red kidney beans. By using polyclonal antibodies prepared against AGL, we have found that the lectin is present in the gonads and eggs but not in other tissues of adult Aplysia californica. We have examined biological actions of AGL on Aplysia neurons growing in primary cell culture. AGL affects several properties of these neurons. The addition of 100 nM AGL to cultured neurons enhances neurite outgrowth from the cell soma, resulting in a greater number of primary processes. In addition, AGL acts as a neurotrophic agent, increasing neurite viability in vitro. This trophic effect is not seen with concanavalin A (con A), another lectin known to affect several properties of cultured Aplysia neurons. The results are consistent with the suggestion that AGL may play a role in neuronal differentiation and/or maintenance of viability.  相似文献   

20.
Five major cAMP-binding proteins that differ in size and charge have been identified in neurons of Aplysia californica by photoaffinity labeling with [32P]8-N3cAMP. These proteins, which we believe are regulatory subunits of cAMP-dependent protein kinase, all differ from the major cAMP-binding protein of buccal muscle. We have compared the structures of these proteins by peptide mapping after chemical and proteolytic cleavage. These analyses indicate that the five binding proteins from nervous tissue and the major muscle protein are closely related to each other. For example, the three neuronal proteins that are most alike and the cAMP-binding protein from muscle have a similar, if not identical, Mr 20,000 domain that contains the 8-N3cAMP-binding site; beyond this domain they diverge. All six proteins appear to belong to a family in which homologous regions have been conserved to maintain common functions. We suggest that the regions of the molecules that differ mediate special functions such as ticketing to particular compartments of the cell. Evidence for regional assortment of the cAMP-dependent protein kinases according to structural type was afforded by subcellular fractionation of Aplysia nervous tissue; photoaffinity labeling of cytoplasm, cytoskeleton, and membrane fractions demonstrated a differential distribution of the five neuronal cAMP-binding proteins. Selective phosphorylation of specific substrates could be a consequence of the compartmentation of diverse cAMP-dependent kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号