首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

2.
Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which detect the relative proportions of red (R) and far‐red (FR) radiation within dense communities. We analysed two aspects of shade avoidance, the acceleration of flowering and the enhancement of elongation growth, displayed by more than 100 accessions of Arabidopsis thaliana (Heyn.) in response to FR‐proximity signals. Both traits showed wide variation between accessions, which was unrelated to the latitude of the location of original collection. Flowering acceleration is a major feature of shade avoidance in rosette plants such as Arabidopsis, and most accessions showed dramatic responses, but several were identified as being recalcitrant to the proximity signal. These accessions are likely to be informative in the analysis of quantitative variation in shade avoidance. Hypocotyl elongation, treated here as an indicator of elongation growth responses, also varied widely amongst accessions. The variations in flowering acceleration and elongation were not correlated, indicating that microevolution in the downstream pathways from signal perception has occurred separately.  相似文献   

3.
In recent years, the concept of shade avoidance has provided a functional meaning to the role of the phytochrome photoreceptor family in mature plants in their natural environment, and the question of which of these phytochromes is responsible for shade avoidance reactions has inevitably been raised. Unfortunately, a misconception has arisen that phytochrome B is solely responsible for detecting the environmental signal that initiates the shade avoidance syndrome. This view is too simplistic, and is based upon a selective interpretation of the available evidence. In this short Commentary, we review the concept of the shade avoidance syndrome, show how the misconception arose, and emphasize the plurality of perception and response that is crucial to successful competition for light.  相似文献   

4.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

5.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

6.
Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host–pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate.  相似文献   

7.
Adaptation to different habitat types across a patchy landscape may either arise independently in each patch or occur due to repeated colonization of each patch by the same specialized genotype. We tested whether open- and closed-canopy forms of Impatiens capensis, an herbaceous annual plant of eastern North America, have evolved repeatedly by comparing hierarchical measures of F(ST) estimated from AFLPs to morphological differentiation measured by Q(ST) for five pairs of populations found in open and closed habitats in five New England regions. Morphological differentiation between habitats (Q(HT)) in elongation traits was greater than marker divergence (F(HT)), suggesting adaptive differentiation. Genotypes from open- and closed-canopy habitats differed in shade avoidance traits in several population pairs, whereas patterns of AFLP differentiation suggest this differentiation does not have a single origin. These results suggest that open- and closed-canopy habitats present different selective pressures, but that the outcome of diversifying selection may differ depending on specific closed- and open-canopy habitats and on starting genetic variation. Hierarchical partitioning of F(ST) and Q(ST) makes it possible to distinguish global stabilizing selection on traits across a landscape from diversifying selection between habitat types within regions.  相似文献   

8.
Plants growing in dense vegetations compete with their neighbors for resources such as water, nutrients and light. The competition for light has been particularly well studied, both for its fitness consequences as well as the adaptive behaviors that plants display to win the battle for light interception. Aboveground, plants detect their competitors through photosensory cues, notably the red:far-red light ratio (R:FR). The R:FR is a very reliable indicator of future competition as it decreases in a plant-specific manner through red light absorption for photosynthesis and is sensed with the phytochrome photoreceptors. In addition, also blue light depletion is perceived for neighbor detection. As a response to these light signals plants display a suite of phenotypic traits defined as the shade avoidance syndrome (SAS). The SAS helps to position the photosynthesizing leaves in the higher zones of a canopy where light conditions are more favorable. In this review we will discuss the physiological control mechanisms through which the photosensory signals are transduced into the adaptive phenotypic responses that make up the SAS. Using this mechanistic knowledge as a starting point, we will discuss how the SAS functions in the context of the complex multi-facetted environments, which plants usually grow in.Key words: competition, shade avoidance, hormones, cell wall, adaptive plasticity, photoreceptor, light  相似文献   

9.
10.
D. J. Carr  D. M. Reid 《Planta》1966,69(1):70-78
Summary Actinomycin-D inhibits phytochrome-mediated responses of etiolated plants. In the unrolling response of a barley first leaf the inhibition by act. D is greater when the antibiotic is applied 80 minutes after irradiation; earlier or later applications are less inhibitory. Inhibition is relieved by deoxyguanosine applied before or after act. D. Similar effects are found with the plumular hooks of peas and beans. These results suggest that phytochrome-mediated responses involve RNA production on a DNA template. The location of phytochrome in the cell is discussed in relation to its possible association with DNA, especially that of the plastids and mitochondria. Phytochrome may thus act as a repressor of gene sequences involved (for instance) in the removal of etiolation symptoms, red light (660 nm) causing its dissociation from DNA. Far-red radiation may reverse the effects by causing re-association of phytochrome.
Zusammenfassung Actinomycin D vermag verschiedene phytochromgesteuerte Reaktionen etiolierter Pflanzen zu hemmen. So wird z. B. die von Rotlicht induzierte Aufrollung des ersten Blattes von im Dunkeln kultivierter Gerste besonders durch Act. D gehemmt, wenn man das Antibioticum ungefähr 80 min nach der Belichtung appliziert; spätere oder frühere Darbietung wirkt weniger oder überhaupt nicht. Die Hemmung wird durch Desoxyguanosin aufgehoben.Unter Berücksichtigung der bekannten Aktionsweise des Actinomycins D bei der DNS-abhängigen RNS-Synthese und der aus der Literatur bisher bekannten Tatsachen über phytochromgesteuerte Reaktionen muß vermutet werden, daß das Phytochrom eng an das DNS gebunden ist (vermutlich auch in Plastiden und Mitochondrien!) und als Repressor-System fungiert. Rotlicht löst diese Bindung und ermöglicht dadurch die Gen-Wirkung.


D. M. Reid is the holder of an Agricultural Research Council Post-Graduate Studentship.  相似文献   

11.
Plants at high population density compete for light, showing a series of physiological responses known as the shade avoidance syndrome. These responses are controlled by the synthesis of the hormone auxin, which is regulated by two signals, an environmental one and an internal one. Considering that the auxin signal induces plant growth after a time lag, this work shows that plant growth can be modelled in terms of an energy-like function extremization, provided that the Markov property is not applied. The simulated height distributions are bimodal and right skewed, as in real community of plants. In the case of isolated plants, theoretical growth dynamics and speed correctly fit Arabidopsis thaliana experimental data reported in literature. Moreover, the growth dynamics of this model is shown to be consistent with the biomass production function of an independent model. These results suggest that memory effects play a non-negligible role in plant growth processes.  相似文献   

12.
13.
The importance of a single genotype being able to produce different phenotypes in different environments (phenotypic plasticity) is widely recognized in evolutionary theory and its adaptive significance is clear. In most cases, the developing organism responds to an environmental cue by producing a selectively and immediately appropriate phenotype. One subset of phenotypic responses to environmental stimuli, however, does not necessarily provide an immediate selective advantage. Rather, these kinds of responses, which we call 'predictive adaptive responses' (PARs), act primarily to improve fitness at a later stage of development. We argue that PARs have had an important role in human evolution, and that their recognition and interpretation has major significance for public health.  相似文献   

14.
In plants, the ratio of red to far-red wavelengths (R:FR) reliably indicates neighbor proximity and influences stem elongation. Enhanced elongation increases light interception and fitness under crowded conditions. However, many environmental factors vary simultaneously such that responses to R:FR may be affected by abiotic conditions or maternal environmental conditions. This study examines the effects of temperature, photoperiod, and maternal environment on stem-elongation responses to R:FR. Four populations of Abutilon theophrasti (two from disturbed, weedy areas and two from cornfields) were used in factorial common-garden experiments of temperature × R:FR × population and photoperiod × R:FR × population. Seedling growth of greenhouse- and field-derived seed was compared to evaluate maternal effects. Maternal environment did not alter seedling elongation. Higher temperatures resulted in both a twofold increase in average elongation and increased responsiveness to R:FR. Significant three-way interactions in both experiments demonstrate that population responses to R:FR differ depending on temperature and photoperiod conditions. These results indicate that elongation responses to R:FR are more variable than previously realized. The observed variability in elongation also suggests that the outcome of competitive interactions in the natural environment will depend on ambient temperature, photoperiod length, and population origin.  相似文献   

15.
Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity and accelerated reproduction, both based on the idea of predictive adaptive responses (PARs). According to external PAR hypotheses, early-life adversity provides a ‘weather forecast’ of the environmental conditions into which the individual will mature, and it is adaptive for the individual to develop an appropriate phenotype for this anticipated environment. In internal PAR hypotheses, early-life adversity has a lasting negative impact on the individual''s somatic state, such that her health is likely to fail more rapidly as she gets older, and there is an advantage to adjusting her reproductive schedule accordingly. We use a model of fluctuating environments to derive evolveability conditions for acceleration of reproductive timing in response to early-life adversity in a long-lived organism. For acceleration to evolve via the external PAR process, early-life cues must have a high degree of validity and the level of annual autocorrelation in the individual''s environment must be almost perfect. For acceleration to evolve via the internal PAR process requires that early-life experience must determine a significant fraction of the variance in survival prospects in adulthood. The two processes are not mutually exclusive, and mechanisms for calibrating reproductive timing on the basis of early experience could evolve through a combination of the predictive value of early-life adversity for the later environment and its negative impact on somatic state.  相似文献   

16.
Using two ecotypes of Stellaria longipes with contrasting responses to shade, we found that plants can differ in their responses to similar light cues, reflecting adaptations to their natural habitat. It was also observed that the plants could distinguish between distinct shade signals. Furthermore, the activity of wall modifying proteins, expansins and xyloglucan endotransglucosylase/hydrolase(s) (XTHs) was regulated during these responses. However, only expansin activity and gene expression profiles correlated with observed growth trends. The differential expression of expansins was light signal specific and ecotype specific and could account for both the trends in growth and their magnitude. We have thus established a potential molecular basis for the observed plasticity in responses to shade.Key words: shade avoidance, cell wall modification, expansins, XTHs, Stellaria longipes, phenotypic plasticity, light quality  相似文献   

17.
Constraints on the evolution of adaptive phenotypic plasticity in plants   总被引:1,自引:0,他引:1  
The high potential fitness benefit of phenotypic plasticity tempts us to expect phenotypic plasticity as a frequent adaptation to environmental heterogeneity. Examples of proven adaptive plasticity in plants, however, are scarce and most plastic responses actually may be 'passive' rather than adaptive. This suggests that frequently requirements for the evolution of adaptive plasticity are not met or that such evolution is impeded by constraints. Here we outline requirements and potential constraints for the evolution of adaptive phenotypic plasticity, identify open questions, and propose new research approaches. Important open questions concern the genetic background of plasticity, genetic variation in plasticity, selection for plasticity in natural habitats, and the nature and occurrence of costs and limits of plasticity. Especially promising tools to address these questions are selection gradient analysis, meta-analysis of studies on genotype-by-environment interactions, QTL analysis, cDNA-microarray scanning and quantitative PCR to quantify gene expression, and two-dimensional gel electrophoresis to quantify protein expression. Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help us to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change.  相似文献   

18.
19.
Phenotypic plasticity, the ability of a genotype to express different phenotypes across environments, is an adaptive strategy expected to evolve in heterogeneous environments. One widely held hypothesis is that the evolutionary benefits of plasticity are reduced by its costs, but when compared with the number of traits tested, the evidence for costs is limited. Selection gradients were calculated for traits and trait plasticities to test for costs of plasticity to density in a field study using recombinant inbred lines (RILs) of Brassica rapa. Significant costs of putatively adaptive plasticity were found in three out of six measured traits. For one trait, petiole length, a cost of plasticity was detected in both environments tested; such global costs are expected to more strongly constrain the evolution of plasticity than local costs expressed in a single environment. These results, in combination with evidence from studies in segregating progenies of Arabidopsis thaliana, suggest that the potential for genetic costs of plasticity exists in natural populations. Detection of costs in previous studies may have been limited because historical selection has purged genotypes with costly plasticity, and experimental conditions often lack environmental stresses.  相似文献   

20.

Background  

Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environmental change, or epigenetic modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号