首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA-dependent RNA-polymerase from E. coli B/r and its rif-r mutant rpoB409 with pleiotropic effect has been studied. It was shown, that multiple forms of promotor sites in T4- and T7-DNA "early" regions are recognized with different efficiences by RNA-polymerases from E. coli B/r and rpoB409. The rif-r rpoB409 mutation has been reported to affect the beta-subunit. Thus, the present data indicates that the selection of promoter sites can be controlled by the beta-subunit of RNA-polymerase.  相似文献   

2.
Specific modification of promoter regions of DNA has been studied. Plasmid pK56B1 DNA has been used as a model to test RNA-polymerase binding with DNA under various conditions. RNA-polymerase is shown to form specific complexes with DNA which are stable in solutions with a moderate ionic strength (0.1-0.2 M NaCl), under pH 5-8 in the presence of 0.5 M O-methylhydroxylamine of O-delta-aminooxybutylhydroxylamine. Escherichia coli JM103 cells have been transfected with DNAs treated with 0.5 M O-methylhydroxylamine at 37 degrees C, pH 5.2. The inactivation effects of the mutagen on single-stranded DNA of bacteriophage M13 m p1, double-stranded form of this bacteriophage (replicative form-RF) and on the complex of RNA-polymerase with RF DNA have been compared. The obtained data confirmed the specificity of reagent action with DNA sites binding with the enzyme. Selectivity of promoters modification has been confirmed also by the analysis of M13 m p1 DNA mutations induced in lacZ' gene by delta-aminooxybutylhydroxylamine effect on the DNA complex with DNA-polymerase.  相似文献   

3.
Synthesis of host-specific and phage-specific messenger ribonucleic acid (mRNA) was studied in bacteria infected by unmodified (T1 . B) or modified [T1 . B(P1)] bacteriophage T1. In a "standard" infection of Escherichia coli B by T1 . B (no host-controlled modification involved), the rate and amount of T1 mRNA synthesis was intermediate between those values reported for infections by a virulent phage such as T4 or a temperate phage such as lambda. The initial rate of mRNA synthesis was slightly increased after T1 . B(P1) infection of E. coli B in comparison with T1 . B infection of the same host. Little or no phage mRNA synthesis could be detected in T1 . B infection of E. coli B(P1). Phage mRNA synthesis in T1 . B(P1)-infected E. coli B(P1) cells was approximately the same in amount as that seen in T1 . B(P1) infection of E. coli B. Synthesis of host-specific mRNA continued throughout the latent period in all infections studied. However, the enzyme beta-galactosidase could not be induced, except after T1 . B infection of E. coli B(P1). In an attempt to understand the apparent differences in mRNA synthesis after infection of E. coli B by phages T1 . B or T1 . B(P1), the effect of altered T1 deoxyribonucleic acid (DNA) methylation on mRNA synthesis was studied. Methyl-deficient T1 DNA, made in cells infected with ultraviolet-irradiated phage T3, inhibited (14)C-uridine incorporation more strongly than normal T1. One passage of methyl-deficient T1 through E. coli B restored uracil incorporation rates to those seen with ordinary T1. This suggests that methylation of T1 DNA can influence the rate of phage mRNA synthesis. However, attempts to relate the difference in mRNA synthesis seen between T1 . B and T1 . B(P1) in E. coli B to the activity of the P1 modification gene were not conclusive.  相似文献   

4.
5.
This paper presents methods developed in order to analyze experimental results concerning the binding of Escherichia coli DNA-dependent RNA polymerase to DNA at high and at low DNA concentrations, using the filter retention assay. The basis hypotheses, under which the mathematical expressions for describing the kinetics of binding are derived, are as follows. (a) At low DNA concentration: equivalence and independence of the specific binding sites; first-order dependence of the binding reaction on both DNA and protein concentration. (b) At high DNA concentration: equivalence and independence of the non-specific binding sites; no direct transfer or one-dimensional sliding of the protein along the DNA. Comparison between theoretical predictions and experimental results at high DNA concentration will allow one to determine the relative value of the rates of binding of RNA polymerase to different promoters (between 1 and 2 in T5 DNA). Binding experiments performed at low DNA concentration are reported in this paper: these results and the analysis which is reported allow one to determine the value of the rate constant of formation of non-filterable complexes for the system fd DNA (replicative form) . RNA-polymerase (kappa a = 3.3 X 10(8) M-1 s-1 in 0.1 M NaCl, 0.01 M MgCl2).  相似文献   

6.
The shuttle Escherichia coli - Streptomyces plasmids were used to transform S. lividans 66. Plasmid DNAs isolated from this strain transform it 10-1000-fold more efficiently than DNAs from E. coli. Rare transformant cured from most restricted plasmid is more efficient recipient of plasmid DNA from E. coli and has the property of R +/- M+ mutant. Restriction in S. lividans 66 correlates with the appearance in DNA from E. coli of the sites susceptible to Scg2I restriction endonuclease. The latter was isolated earlier from recombinant strain Rcg2, a hybrid between S. griseus Kr. 15 and S. coelicolor A3(2). Scg2I possesses the recognition sequence CCTAGG, like EcoRII, MvaI and Eco dcm methylase. The DNA resistant to Scg2I cleavage retained this ability after in vitro modification by EcoRII methylase. So, the resistance of DNA to Scg2I cleavage is not connected with methylation at 4th and 5th position of second cytosine in the recognition sequence. Neither restriction of plasmid DNA in S. lividans 66 is dependent on dcm modification in E. coli, though its dependence on dam modification is not excluded. It is assumed that the restriction in S. lividans 66 is specified by endonuclease analogous to Scg2I.  相似文献   

7.
The effect of Escherichia coli single-stranded DNA binding protein (SSB) on DNA synthesis by T7 DNA polymerase and E. coli DNA polymerase I (large fragment) using native or aminofluorene-modified M13 templates was evaluated by in vitro DNA synthesis assays and polyacrylamide gel electrophoresis analysis. The two polymerase enzymes displayed differential responses to the addition of SSB. T7 DNA polymerase, a enzyme required for the replication of the T7 chromosome, was stimulated by the addition of SSB whether native or modified templates were used. On the other hand, E. coli DNA polymerase I was slightly stimulated by the addition of SSB to the native template but substantially inhibited on modified templates. This result suggests that DNA polymerase I may be able to synthesize past an aminofluorene adduct but that the presence of SSB inhibited this trans-lesion synthesis. Polyacrylamide gels of the products of DNA synthesis by polymerase I supported this inference since SSB caused a substantial increase in the accumulation of shorter DNA chains induced by blockage at the aminofluorene adduct sites.  相似文献   

8.
We reacted uracil-containing M13mp2 DNA with N-hydroxy-2-aminofluorene to produce a template with N-(deoxyguanosin-8-yl)-2-aminofluorene adducts. This template was hybridized to a non-uracil-containing linear fragment from which the lac z complementing insert had been removed to produce a gapped substrate. DNA synthesis using this substrate with the modified T7 DNA polymerase Sequenase led to an increase in the number and frequency of lac- mutations observed. Escherichia coli DNA polymerase I (Kf) did not yield a comparable increase in mutation frequency or number even though both Sequenase and the E. coli polymerase had similar, low, 3'----5' exonuclease activities as compared to T4 DNA polymerase. We did not observe an increase in mutations when synthesis was attempted on a template reacted with N-acetoxy-2-(acetylamino)fluorene to give N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene adducts. Both E. coli and T7 enzymes terminate synthesis before all (acetylamino)fluorene lesions. Only some of the putative aminofluorene adducts produced strong termination bands, and there was a difference in the pattern generated by Sequenase and E. coli pol I (Kf) using the same substrate. Analysis of the mutations obtained from Sequenase synthesis on the aminofluorene-containing templates indicated a preponderance of -1 deletions at G's and of G----T transversions.  相似文献   

9.
苜蓿中华根瘤菌与耐盐有关的DNA片段的克隆   总被引:3,自引:0,他引:3  
以耐盐的苜蓿中华根瘤菌(\%Sinorhizobium meliloti) \%042B为材料,制备其总DNA,经过限制性内切酶\%Eco\%RⅠ的部分酶解,利用电洗脱方法回收15~25kb大小的DNA片段。以碱法制备载体质粒pLAFRⅠ,用\%Eco\%RⅠ将其切成线状,然后用T\-4DNA连接酶将回收片段与线状载体连接,利用包装蛋白进行包装后,感染大肠杆菌(Escherichia coli)S17\|1,构建了042B的基因文库。以固体亚硝基胍作为诱变剂处理出发菌株,在05mol/LNaCl的条件下,从2000个菌落中筛选得到12株042B的盐敏感突变株,以其中稳定的盐敏突变株GZ17为受体菌,利用两亲本杂交将含有042B的DNA片段的pLAFRⅠ重组质粒转移到GZ17中,在含有四环素和05mol/LNaCl的基本培养基上筛选出能够耐盐的阳性克隆,获得了与耐盐有关的7kb长的DNA片段。对该片段进行亚克隆,最终获得了4kb与耐盐有关的片段。  相似文献   

10.
The ability of Escherichia coli DNA polymerase I and T7 DNA polymerase to bypass bulky C-8 guanyl-2-aminofluorene adducts in DNA was studied by in vitro DNA synthesis reactions on a site-specific aminofluorene-modified M13mp9 template. This site-specifically modified DNA was prepared by ligating an oligonucleotide containing a single aminofluorene adduct into a gapped heteroduplex of M13mp9 DNA (Johnson, D. L., Reid, T. M., Lee, M.-S., King, C. M., and Romano, L. J. (1986) Biochemistry 25, 449-456). The resulting covalently closed duplex DNA molecule was then cleaved with a restriction endonuclease, denatured, and annealed to a primer on the 3' side of the adduct to form a template specifically designed to study bypass. In this system, any synthesis that was not blocked by the bulky aminofluorene adduct would proceed to the 5' terminus of the single-stranded template, while synthesis interrupted by the adduct would terminate at or near the adduct location. We have measured DNA synthesis on this template and find that the amount of radiolabeled nucleotide incorporated by either E. coli DNA polymerase I (large fragment) or T7 DNA polymerase was much greater than would be predicted if the aminofluorene adduct were an absolute block to DNA synthesis. Furthermore, the products of similar reactions electrophoresed on polyacrylamide gels showed conclusively that the majority of the DNA synthesized by either the T7 DNA polymerase or E. coli DNA polymerase I bypassed the aminofluorene lesion. Substitution of Mn2+ for Mg2+ as the divalent cation resulted in even higher levels of translesion synthesis.  相似文献   

11.
Bacteriophage T5 is not confined by the restriction systems of the second type EcoRII and EcoRV. Bacteriophage T5 DNA is not modified by EcoRII and EcoRV methylases in vivo. The sites of recognition for restriction endonuclease EcoRV are mapped at 24.4; 57.6; 68.5; 70.2% of T5 DNA, while the sites at 5.1; 7.6% are recognized by EcoRII, the sites at 5.75; 6.0 and 6.5% are recognized by HpaI in FST. A high activity of restriction endonucleases EcoRI and EcoRV is demonstrated in crude extracts of E. coli B834 (RI) and E. coli B834 (RV) cells infected by bacteriophage T5. The simultaneous infection of E. coli B834 (RI) or E. coli B834 (RV) cells by the amber mutants of bacteriophage T5 and the suppressing phage lambda NM761 does not result in the protection of lambda DNA by the T5 anti-restriction mechanism. The presented data support the hypothesis that the anti-restriction mechanism of bacteriophage T5 is based on prevention of T5 DNA contacts with restriction enzymes by a specific phage protein.  相似文献   

12.
The genome of Mycoplasma arthritidis strain 158 has modified cytosine residues at AGCT sequences that render the DNA resistant to digestion with the AluI restriction endonuclease. The DNA methyltransferase responsible for the base modification has previously been designated MarI. From the complete genome sequence of M. arthritidis , we identify Marth_orf138 as a candidate marI gene. Marth_orf138 was cloned in Escherichia coli and its TGA codons converted to TGG. DNA isolated from E. coli cells expressing the modified Marth_orf138 gene was degraded by the AluI nuclease, indicating that Marth_orf138 does not code for MarI. However, the DNA from E. coli was found to have acquired resistance to the restriction endonuclease HhaI. Genomic DNA from M. arthritidis was also found to be resistant to HhaI (recognizes GCGC). The M. arthritidis isoschizomer of the HhaI DNA methyltransferase, coded by Marth_orf138, is designated MarII. Transformation of M. arthritidis was not significantly affected by modification of plasmid at HhaI sites, indicating that the mycoplasma lacks a restriction endonuclease that recognizes GCGC sites.  相似文献   

13.
A method is suggested for chemical modification of preselected regions of plasmid DNA by complementary single-stranded restriction fragments of DNA (srf DNA), carrying alkylating reagents. The gene coding for tetracycline resistance of plasmid pBR322 was used as a target. Srf DNA was prepared by a partial digestion of a double-stranded EcoRI-BamHI restriction fragment (377 base pairs) from Tcr by E. coli exonuclease III. The residues of an alkylating reagent N,N,N'-tri(beta-chlorethyl)-N'-(p-formylphenyl) propylenediamine 1,3 (TFP) were attached covalently to 4-5% of sfr DNA bases. The alkylating derivative of the sfr DNA was hybridized with supercoiled pBR322 plasmid DNA. The hybridization conditions (37 degrees C, 40% formamide, 0,2 M NaCl, 0,1 M Tris-HCl pH 7,5, 0,001 M EDTA) under which the bases carrying TFP residues are not eliminated from the sfr DNA, and transforming activity of pBR322 DNA does not decrease were established. It was shown that about 20% of plasmid pBR322 molecules form D-loops with alkylating sfr DNA under these conditions. It was shown that sfr DNA, carrying TFP can alkylate the complementary region of plasmid DNA, forming cross-linked D-loops. A method for the site-directed mutagenesis of switching off the preselected genes or non-transcribed DNA functional regions (promotors, introns etc) integrated into plasmids of other vectors is suggested.  相似文献   

14.
15.
Escherichia coli strains B and K-12, which restrict growth of nonglucosylated T- even phage (T(*) phage), and nonrestricting strains (Shigella sonnei and mutants of E. coli B) were tested for levels of endonuclease I and exonucleases I, II, and III, by means of in vitro assyas. Cell-free extracts freed from deoxyribonucleic acid (DNA) were examined with three substrates: E. coli DNA, T(*)2 DNA, and T2 DNA. Both restricting and nonrestricting strains had comparable levels of the four nuclease activities and had similar patterns of preference for the three substrates. In addition, mutants of E. coli B and K-12 that lack endonuclease I were as effective as their respective wild types in restricting T(*) phage.  相似文献   

16.
The restriction endonuclease Cac824I has been shown to be a major barrier to electrotransformation of Clostridium acetobutylicum ATCC 824 (L. D. Mermelstein, N. E. Welker, G. N. Bennett, and E. T. Papoutsakis, Bio/Technology 10:190-195, 1992). Methylation by the phi 3T I methyltransferase encoded by Bacillus subtilis phage phi 3T was shown to protect plasmid DNA from restriction by Cac824I. Expression in Escherichia coli of the phi 3tI gene (which encodes the phi 3T I methyltransferase) from pAN1, which replicates via the p15A origin of replication, was sufficient to completely methylate coresident E. coli-C. acetobutylicum shuttle vectors with ColE1 origins of replication. Three shuttle vectors (pIMP1, pSYL2, and pSYL7) methylated in this manner were used to efficiently electrotransform strain ATCC 824. These vectors could not be introduced into strain ATCC 824 when unmethylated because the E. coli portions of the plasmids contain a large number of Cac824I sites. This method obviates the need to use B. subtilis-C. acetobutylicum shuttle vectors with few Cac824I sites to introduce DNA into C. acetobutylicum ATCC 824.  相似文献   

17.
Summary The host controlled modifications of phage -DNA byEscherichia coli B, K, and C (P1) can be suppressed by preinfecting the bacteria with UV-irradiated phage T3. Since UV-irradiated T3 induces an enzyme which cleaves S-adenosylmethionine into homoserine and thiomethyl adenosine, and since S-adenosylmethionine is the only methyl group donor for DNA methylation, we conclude that methylation is a required step in the host controlled modification of -DNA.T3 itself successfully infectsE. coli K and B with its nonmethylated DNA. Also, restricted phage or T1 will be accepted by the restrictive hostsE. coli B, K, and C(P1) if these are preinfected with UV-T3. It thus appears that T3 is capable of blocking the restriction mechanisms in these hosts.The inability of T3 to grow on C(P1) is not understood. Since T3-DNA is restricted but not degraded into nucleotides byE. coli C(P1) we presume that degradation is not the initial step in restriction.Supported by Grant No. GB 1033 R of the National Science Foundation.Postdoctoral fellow of the Deutsche Forschungsgemeinschaft.  相似文献   

18.
DNA duplexes bearing an aldehyde group at the 2'-position of the sugar moiety were used for affinity modification of (cytosine-5)-DNA methyltransferase SsoII. It is shown that lysine residues of M.SsoII N-terminal region are located in proximity to DNA sugar-phosphate backbone of a regulatory sequence of promoter region of SsoII restriction-modification enzyme coding genes. The ability of the two M.SsoII subunits to interact with DNA regulatory sequence has been demonstrated by affinity modification using DNA duplexes with two 2'-aldehyde groups. Changes in nucleotide sequence of one half of the regulatory region prevented cross-linking of the second M.SsoII subunit. The results on sequential affinity modification of M.SsoII by two types of modified DNA ligands (i.e. by 2'-aldehyde-containing and phosphoryldisulfide-containing) have demonstrated the possibility of covalent attachment of the protein to two different DNA recognition sites: regulatory sequence and methylation site.  相似文献   

19.
Two species of restriction endonuclease were isolated by gel filtration and DEAE-cellulose chromatography from a cell-free extract of Bacillus amyloliquefaciens (B. subtilits) N strain; a lower molecular weight endonuclease (endonuclease R.BamNI) and a higher molecular-weight one (endonuclease R.BamNx). Both of them required only Mg2+ for their activities. Endonuclease R.BamNx introduced a larger number of site-specific scissions in Excherchia coli phage lambda DNA that endonuclease R.BamNI did. Endonuclease R.BamNx cleaved Bacillus phage phi 105C DNA at the specific sites which are classified into two groups: one type of sites is modified by B. amyloliquefaciens H strain in vivo while the other is not affected. It was also active on DNA'S OF E. coli phage T7, lambdadvl, Simian virus 40 (SV40) and colicinogenic factor ColEI and was inactive on DNAs of Bacillus phages phi 29 and M2. Endonuclease R.BamHI isolated from H strain by Wilson and Young. This endonuclease was active on DNAs of phage lambda, lambdadvl and SV40, adn was inactive on DNAs of phages phi 105C, phi 29, M2 and T7, and ColEI DNA.  相似文献   

20.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号