首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inferring species phylogenies is an important part of understanding molecular evolution. Even so, it is well known that an accurate phylogenetic tree reconstruction for a single gene does not always necessarily correspond to the species phylogeny. One commonly accepted strategy to cope with this problem is to sequence many genes; the way in which to analyze the resulting collection of genes is somewhat more contentious. Supermatrix and supertree methods can be used, although these can suppress conflicts arising from true differences in the gene trees caused by processes such as lineage sorting, horizontal gene transfer, or gene duplication and loss. In 2004, Huson et al. (IEEE/ACM Trans. Comput. Biol. Bioinformatics 1:151-158) presented the Z-closure method that can circumvent this problem by generating a supernetwork as opposed to a supertree. Here we present an alternative way for generating supernetworks called Q-imputation. In particular, we describe a method that uses quartet information to add missing taxa into gene trees. The resulting trees are subsequently used to generate consensus networks, networks that generalize strict and majority-rule consensus trees. Through simulations and application to real data sets, we compare Q-imputation to the matrix representation with parsimony (MRP) supertree method and Z-closure, and demonstrate that it provides a useful complementary tool.  相似文献   

2.
Majority-rule reduced consensus trees and their use in bootstrapping   总被引:3,自引:0,他引:3  
Bootstrap analyses are usually summarized with majority-rule component consensus trees. This consensus method is based on replicated components and, like all component consensus methods, it is insensitive to other kinds of agreement between trees. Recently developed reduced consensus methods can be used to summarize much additional agreement on hypothesised phylogenetic relationships among multiple trees. The new methods are "strict" in the sense that they require agreement among all the trees being compared for any relationships to be represented in a consensus tree. Majority-rule reduced consensus methods are described and their use in bootstrap analyses is illustrated with a hypothetical and a real example. The new methods provide summaries of the bootstrap proportions of all n-taxon statements/partitions and facilitate the identification of hypotheses of relationships that are supported by high bootstrap proportions, in spite of a lack of support for particular components or clades. In practice majority-rule reduced consensus profiles may contain many trees. The size of the profile can be reduced by constraints on minimal bootstrap proportions and/or cardinality of the included trees. Majority-rule reduced consensus trees can also be selected a posteriori from the profile. Surrogates to the majority-rule reduced consensus methods using partition tables or tree pruning options provided by widely used phylogenetic inference software are also described. The methods are designed to produce more informative summaries of bootstrap analyses and thereby foster more informed assessment of the strengths and weaknesses of complex phylogenetic hypotheses.   相似文献   

3.
New examples are presented, showing that supertree methods such as matrix representation with parsimony, minimum flip trees, and compatibility analysis of the matrix representing the input trees, produce supertrees that cannot be interpreted as displaying the groups present in the majority of the input trees. These methods may produce a supertree displaying some groups present in the minority of the trees, and contradicted by the majority. Of the three methods, compatibility analysis is the least used, but it seems to be the one that differs the least from majority rule consensus. The three methods are similar in that they choose the supertree(s) that best fit the set of input trees (quantified as some measure of the fit to the matrix representation of the input trees); in the case of complete trees, it is argued that, for a supertree method to be equivalent to majority rule or frequency difference consensus, two necessary (but not sufficient) conditions must be met. First, the measure of fit between a supertree and an input tree must be symmetrical. Second, the fit for a character representing a group must be measured as absolute: either it fits or it does not fit. In the restricted case of complete and equally resolved input trees, compatibility analysis (unlike MRP and minimum flipping) fulfils these two conditions: it is symmetrical (i.e., as long as the trees have the same taxon sets and are equally resolved, the number of characters in the matrix representation of tree A that require homoplasy in tree B is always the same as the number of characters in the matrix representation of tree B that require homoplasy in tree A) and it measures fit as all‐or‐none. In the case of just two complete and equally resolved input trees, the two conditions (symmetry and absolute fit) are necessary and sufficient, which explains why the compatibility analysis of such trees behaves as majority consensus. With more than two such trees, these conditions are still necessary but no longer sufficient for the equivalence; in such cases, the compatibility supertree may differ significantly from the majority rule consensus, even when these conditions apply (as shown by example). MRP and minimum flipping are asymmetric and measure various degrees of fit for each character, which explains why they often behave very differently from majority rule procedures, and why they are very likely to have groups contradicted by each of the input trees, or groups supported by a minority of the input trees. © The Willi Hennig Society 2005.  相似文献   

4.
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.  相似文献   

5.
6.
Majority-rule (+) consensus trees   总被引:1,自引:0,他引:1  
The construction of a consensus tree to summarize the information of a given set of phylogenetic trees is now routinely a part of many studies in systematic biology. One popular method is the majority-rule consensus tree. In this paper we introduce and characterize a new consensus method that refines the majority-rule tree by adding certain compatible clusters satisfying a simple criterion.  相似文献   

7.
Bayesian inference of phylogeny is unique among phylogenetic reconstruction methods in that it produces a posterior distribution of trees rather than a point estimate of the best tree. The most common way to summarize this distribution is to report the majority-rule consensus tree annotated with the marginal posterior probabilities of each partition. Reporting a single tree discards information contained in the full underlying distribution and reduces the Bayesian analysis to simply another method for finding a point estimate of the tree. Even when a point estimate of the phylogeny is desired, the majority-rule consensus tree is only one possible method, and there may be others that are more appropriate for the given data set and application. We present a method for summarizing the distribution of trees that is based on identifying agreement subtrees that are frequently present in the posterior distribution. This method provides fully resolved binary trees for subsets of taxa with high marginal posterior probability on the entire tree and includes additional information about the spread of the distribution.  相似文献   

8.
Collections of phylogenetic trees are usually summarized using consensus methods. These methods build a single tree, supposed to be representative of the collection. However, in the case of heterogeneous collections of trees, the resulting consensus may be poorly resolved (strict consensus, majority-rule consensus, ...), or may perform arbitrary choices among mutually incompatible clades, or splits (greedy consensus). Here, we propose an alternative method, which we call the multipolar consensus (MPC). Its aim is to display all the splits having a support above a predefined threshold, in a minimum number of consensus trees, or poles. We show that the problem is equivalent to a graph-coloring problem, and propose an implementation of the method. Finally, we apply the MPC to real data sets. Our results indicate that, typically, all the splits down to a weight of 10% can be displayed in no more than 4 trees. In addition, in some cases, biologically relevant secondary signals, which would not have been present in any of the classical consensus trees, are indeed captured by our method, indicating that the MPC provides a convenient exploratory method for phylogenetic analysis. The method was implemented in a package freely available at http://www.lirmm.fr/~cbonnard/MPC.html  相似文献   

9.
Using a simple example and simulations, we explore the impact of input tree shape upon a broad range of supertree methods. We find that input tree shape can affect how conflict is resolved by several supertree methods and that input tree shape effects may be substantial. Standard and irreversible matrix representation with parsimony (MRP), MinFlip, duplication-only Gene Tree Parsimony (GTP), and an implementation of the average consensus method have a tendency to resolve conflict in favor of relationships in unbalanced trees. Purvis MRP and the average dendrogram method appear to have an opposite tendency. Biases with respect to tree shape are correlated with objective functions that are based upon unusual asymmetric tree-to-tree distance or fit measures. Split, quartet, and triplet fit, most similar supertree, and MinCut methods (provided the latter are interpreted as Adams consensus-like supertrees) are not revealed to have any bias with respect to tree shape by our example, but whether this holds more generally is an open problem. Future development and evaluation of supertree methods should consider explicitly the undesirable biases and other properties that we highlight. In the meantime, use of a single, arbitrarily chosen supertree method is discouraged. Use of multiple methods and/or weighting schemes may allow practical assessment of the extent to which inferences from real data depend upon methodological biases with respect to input tree shape or size.  相似文献   

10.
Many research groups are estimating trees containing anywhere from a few thousands to hundreds of thousands of species, toward the eventual goal of the estimation of a Tree of Life, containing perhaps as many as several million leaves. These phylogenetic estimations present enormous computational challenges, and current computational methods are likely to fail to run even on data sets in the low end of this range. One approach to estimate a large species tree is to use phylogenetic estimation methods (such as maximum likelihood) on a supermatrix produced by concatenating multiple sequence alignments for a collection of markers; however, the most accurate of these phylogenetic estimation methods are extremely computationally intensive for data sets with more than a few thousand sequences. Supertree methods, which assemble phylogenetic trees from a collection of trees on subsets of the taxa, are important tools for phylogeny estimation where phylogenetic analyses based upon maximum likelihood (ML) are infeasible. In this paper, we introduce SuperFine, a meta-method that utilizes a novel two-step procedure in order to improve the accuracy and scalability of supertree methods. Our study, using both simulated and empirical data, shows that SuperFine-boosted supertree methods produce more accurate trees than standard supertree methods, and run quickly on very large data sets with thousands of sequences. Furthermore, SuperFine-boosted matrix representation with parsimony (MRP, the most well-known supertree method) approaches the accuracy of ML methods on supermatrix data sets under realistic conditions.  相似文献   

11.
Maximum likelihood supertrees   总被引:2,自引:0,他引:2  
  相似文献   

12.

Background

Supertree methods combine trees on subsets of the full taxon set together to produce a tree on the entire set of taxa. Of the many supertree methods, the most popular is MRP (Matrix Representation with Parsimony), a method that operates by first encoding the input set of source trees by a large matrix (the "MRP matrix") over {0,1, ?}, and then running maximum parsimony heuristics on the MRP matrix. Experimental studies evaluating MRP in comparison to other supertree methods have established that for large datasets, MRP generally produces trees of equal or greater accuracy than other methods, and can run on larger datasets. A recent development in supertree methods is SuperFine+MRP, a method that combines MRP with a divide-and-conquer approach, and produces more accurate trees in less time than MRP. In this paper we consider a new approach for supertree estimation, called MRL (Matrix Representation with Likelihood). MRL begins with the same MRP matrix, but then analyzes the MRP matrix using heuristics (such as RAxML) for 2-state Maximum Likelihood.

Results

We compared MRP and SuperFine+MRP with MRL and SuperFine+MRL on simulated and biological datasets. We examined the MRP and MRL scores of each method on a wide range of datasets, as well as the resulting topological accuracy of the trees. Our experimental results show that MRL, coupled with a very good ML heuristic such as RAxML, produced more accurate trees than MRP, and MRL scores were more strongly correlated with topological accuracy than MRP scores.

Conclusions

SuperFine+MRP, when based upon a good MP heuristic, such as TNT, produces among the best scores for both MRP and MRL, and is generally faster and more topologically accurate than other supertree methods we tested.  相似文献   

13.
Given a collection of rooted phylogenetic trees with overlapping sets of leaves, a compatible supertree $S$ is a single tree whose set of leaves is the union of the input sets of leaves and such that $S$ agrees with each input tree when restricted to the leaves of the input tree. Typically with trees from real data, no compatible supertree exists, and various methods may be utilized to reconcile the incompatibilities in the input trees. This paper focuses on a measure of robustness of a supertree method called its ``radius" $R$. The larger the value of $R$ is, the further the data set can be from a natural correct tree $T$ and yet the method will still output $T$. It is shown that the maximal possible radius for a method is $R = 1/2$. Many familiar methods, both for supertrees and consensus trees, are shown to have $R = 0$, indicating that they need not output a tree $T$ that would seem to be the natural correct answer. A polynomial-time method Normalized Triplet Supertree (NTS) with the maximal possible $R = 1/2$ is defined. A geometric interpretion is given, and NTS is shown to solve an optimization problem. Additional properties of NTS are described.  相似文献   

14.
Threshold consensus methods for molecular sequences.   总被引:1,自引:0,他引:1  
We introduce a parameterized threshold consensus method (th chi) for molecular sequences which is based on a majority-rule voting principle. In contrast to other frequency-based methods, the th chi method uses a single criterion to return ambiguity codes of different lengths. We derive basic features of the method and establish that it returns at most two ambiguity codes at any position of the consensus sequence. We bound from below the size of the frequency gap that exists when the th chi method returns an ambiguity code. Using such properties, we compare the th chi method to other consensus methods for molecular sequences which are defined in terms of threshold or gap criteria.  相似文献   

15.
Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (flips) to the matrix representation of the set of input trees to resolve their incompatibilities. A previous flip supertree algorithm was limited to finding exact solutions and was only feasible for small input trees. We developed a heuristic algorithm for the flip supertree problem suitable for much larger input trees. We used a series of 48- and 96-taxon simulations to compare supertrees constructed with the flip supertree heuristic algorithm with supertrees constructed using other approaches, including MinCut (MC), modified MC (MMC), and matrix representation with parsimony (MRP). Flip supertrees are generally far more accurate than supertrees constructed using MC or MMC algorithms and are at least as accurate as supertrees built with MRP. The flip supertree method is therefore a viable alternative to other supertree methods when the number of taxa is large.  相似文献   

16.
Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for classification purposes. Such trees can be obtained in two different ways. Either the widest possible range of taxa can be sampled and used in a phylogenetic analysis to produce a "big tree," or preexisting topologies can be used to create a supertree. Although large multigene analyses are often favored, combinable data are not always available, and supertrees offer a suitable solution. The most commonly used method of supertree reconstruction, matrix representation with parsimony (MRP), is presented here. We used a combined data set for the Poaceae to (1) assess the differences between an approach that uses combined data and one that uses different MRP modifications based on the character partitions and (2) investigate the advantages and disadvantages of these modifications. Baum and Ragan and Purvis modifications gave similar results. Incorporating bootstrap support associated with pre-existing topologies improved Baum and Ragan modification and its similarity with a combined analysis. Finally, we used the supertree reconstruction approach on 55 published phylogenies to build one of most comprehensive phylogenetic trees published for the grass family including 403 taxa and discuss its strengths and weaknesses in relation to other published hypotheses.  相似文献   

17.
Suppose that a family of rooted phylogenetic trees T i with different sets X i of leaves is given. A supertree for the family is a single rooted tree T whose leaf set is the union of all the X i , such that the branching information in T corresponds to the branching information in all the trees T i . This paper proposes a polynomial-time method BUILD-WITH-DISTANCES that makes essential use of distance information provided by the trees T i to construct a rooted tree S 0. When a supertree also containing the distance information exists, then S 0 is a supertree. The supertree S 0 often shows increased resolution over the trees found by methods that utilize only the topology of the input trees. When no supertree exists because the input trees are incompatible, several variants of the method are described which still produce trees with provable properties.  相似文献   

18.
Assessing reliability of gene clusters from gene expression data   总被引:5,自引:0,他引:5  
The rapid development of microarray technologies has raised many challenging problems in experiment design and data analysis. Although many numerical algorithms have been successfully applied to analyze gene expression data, the effects of variations and uncertainties in measured gene expression levels across samples and experiments have been largely ignored in the literature. In this article, in the context of hierarchical clustering algorithms, we introduce a statistical resampling method to assess the reliability of gene clusters identified from any hierarchical clustering method. Using the clustering trees constructed from the resampled data, we can evaluate the confidence value for each node in the observed clustering tree. A majority-rule consensus tree can be obtained, showing clusters that only occur in a majority of the resampled trees. We illustrate our proposed methods with applications to two published data sets. Although the methods are discussed in the context of hierarchical clustering methods, they can be applied with other cluster-identification methods for gene expression data to assess the reliability of any gene cluster of interest. Electronic Publication  相似文献   

19.
The use of majority-rule consensus trees as a means of resolving ambiguity in phylogenetic analyses is investigated. It is shown to be an inappropriate method for this purpose.  相似文献   

20.
This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号