首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
When arylsulfatase C, a microsomal membrane-bound enzyme, is assayed with its natural substrates, the 3-beta-hydroxysteroid sulfates, it is also known as steroid sulfatase. Whether arylsulfatase C and steroid sulfatase are identical enzymes or not, however, has long been disputed. We now report that two electrophoretic variants of arylsulfatase C occur in normal human fibroblasts: one has a single anodic band of activity, "s," and the other has an additional faster migrating band, "f". The two types, s and "f + s", occur in cells from either sex. When fibroblast strains with the f + s forms of arylsulfatase C were cloned, two types of primary clones were always obtained: s and f + s. A single f band was never seen. When these primary clones were subcloned, however, the arylsulfatase C phenotype remained unchanged: primary s clones gave rise to s subclones and f + s clones to f + s subclones only. Therefore, these forms were clonal in origin and demonstrated a novel inheritance pattern in human cultured cells. The appearance of increasing amounts of the f band was correlated with up to 4-fold increase of arylsulfatase C activity, whereas the steroid sulfatase activity remained constant, thus demonstrating that arylsulfatase C was not identical with steroid sulfatase activity. Polyclonal antibodies raised against the s form immunoprecipitated activities of the s form of arylsulfatase C and steroid sulfatase but not the f form of arylsulfatase C. Therefore, we conclude that only the s form of arylsulfatase C is immunologically related to steroid sulfatase so that arylsulfatase C per se is not necessarily identical with steroid sulfatase. In addition, a novel form of genetic heterogeneity of isozymes in human fibroblasts is demonstrated.  相似文献   

2.
Complementation of multiple sulfatase deficiency in somatic cell hybrids   总被引:1,自引:0,他引:1  
Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.  相似文献   

3.
Characterization of arylsulfatase C isozymes from human liver and placenta   总被引:1,自引:0,他引:1  
Arylsulfatase C and steroid sulfatase were thought to be identical enzymes. However, recent evidence showed that human arylsulfatase C consists of two isozymes, s and f. In this study, the biochemical properties of the s form partially purified from human placenta were compared with those of the f form from human liver. Only the placental s form has steroid sulfatase activity and hydrolyses estrone sulfate, dehydroepiandrosterone sulfate and cholesterol sulfate. The liver f form has barely detectable activity towards these sterol sulfates. With the artificial substrate, 4-methylumbelliferyl sulfate, both forms demonstrated a similar KM but the liver enzyme has a pH optimum of 6.9 while the placental form displayed two optima at 7.3 and 5.5. The molecular weight of the native enzyme determined with gel filtration was 183,000 for the s form and 200,000 for the f form and their pI's were also similar at 6.5. However, the T50, temperature at which half of the enzyme activity was lost, was 49.5 degrees C for the f form and 56.8 degrees C for the s form. Polyclonal antibodies raised against the placental form reacted specifically against the s and not the f form. They immuno-precipitated concomitantly greater than 80% of the total placental arylsulfatase C and steroid sulfatase activities while less than 20% of the liver enzyme was immuno-precipitable. In conclusion, the two isozymes s and f of arylsulfatase C in humans purified from placenta and liver, respectively, have similar KM, pI' and native molecular weight. However, they are distinct proteins with different substrate specificity, pH optima, heat-lability and antigenic properties. Only the s form is confirmed to be steroid sulfatase.  相似文献   

4.
The distal short arm of the human X chromosome is of interest because it contains genes which escape X chromosome inactivation and because it is subject to frequent deletions in human patients. The steroid sulfatase gene has been particularly well studied as an example of a gene which escapes X inactivation and which is included in a number of these deletion events. For these reasons a physical map of the region around the STS gene would be of interest. We have constructed a rare cutting enzyme map of this area and have determined the position of several nearby markers with respect to STS. We have also oriented the 5' and 3' ends of the STS gene on this map and have determined the centromeric and telomeric portions of the region. Finally, we have shown that this map can be used to locate deletion breakpoints in STS deficient patients.  相似文献   

5.
The process of mammalian X chromosome inactivation results in the inactivation of most, but not all, genes along one or the other of the two X chromosomes in females. On the human X chromosome, several genes have been described that "escape" inactivation and continue to be expressed from both homologues. All such previously mapped genes are located in the distal third of the short arm of the X chromosome, giving rise to the hypothesis of a region of the chromosome that remains noninactivated during development. The A1S9T gene, an X-linked locus that complements a mouse temperature-sensitive defect in DNA synthesis, escapes inactivation and has now been localized, in human-mouse somatic cell hybrids, to the proximal short arm, in Xp11.1 to Xp11.3. Thus, A1S9T lies in a region of the chromosome that is separate from the other genes known to escape inactivation and is located between other genes known to be subject to X inactivation. This finding both rules out models based on a single chromosomal region that escapes inactivation and suggests that X inactivation proceeds by a mechanism that allows considerable autonomy between different genes or regions on the chromosome.  相似文献   

6.
Summary A radioisotopic assay is described to distinguish between Chinese hamster and human steroid sulfatase activity in extracts prepared from hamsterxhuman somatic cell hybrids. This assay is based on different pH optima and provides a sensitive and unambiguous biochemical marker for the short arm of the human X chromosome and as well as for otherwise genetically inactivated X chromosomes in rodentxhuman hybrids.  相似文献   

7.
In mammalian somatic cells, sex-chromosome dosage compensation is achieved by random inactivation of one of the two X chromosomes. The Xg blood group antigen (Xg) and steroid sulfatase (STS) loci on the distal end of the short arm of the X chromosome have been shown to escape this inactivation. However, it has been reported that on structurally abnormal inactive X chromosomes Xg and STS are inactivated. This discrepancy requires further consideration since whatever process accounts for the lack of inactivation of these loci on structurally normal, inactive X chromosomes might be anticipated to be operative on structurally abnormal, inactive X chromosomes. To investigate this issue, we examined the expression of STS activity in mouse-human somatic-cell hybrids retaining two different, deleted, inactive human X chromosomes. These studies provide evidence for lack of inactivation of STS on structurally abnormal, inactive X chromosomes.  相似文献   

8.
Summary The gene locus for steroid sulfatase, deficiency of which causes X-linked ichthyosis, is assigned to Xp11Xpter by analysis of 24 man-Chinese hamster somatic cell hybrids. High steroid sulfatase,activity in a hybrid clone having retained only part of Xq is explained by demonstration of an additional late-replicating human X chromosome. This observation confirms previous evidence for noninactivation of the STS locus.  相似文献   

9.
Polymorphic X-chromosome inactivation of the human TIMP1 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
X inactivation silences most but not all of the genes on one of the two X chromosomes in mammalian females. The human X chromosome preserves its activation status when isolated in rodent/human somatic-cell hybrids, and hybrids retaining either the active or inactive X chromosome have been used to assess the inactivation status of many X-linked genes. Surprisingly, the X-linked gene for human tissue inhibitor of metalloproteinases (TIMP1) is expressed in some but not all inactive X-containing somatic-cell hybrids, suggesting that this gene is either prone to reactivation or variable in its inactivation. Since many genes that escape X inactivation are clustered, we examined the expression of four genes (ARAF1, ELK1, ZNF41, and ZNF157) within approximately 100 kb of TIMP1. All four genes were expressed only from the active X chromosome, demonstrating that the factors allowing TIMP1 expression from the inactive X chromosome are specific to the TIMP1 gene. To determine if this variable inactivation of TIMP1 is a function of the hybrid-cell environment or also is observed in human cells, we developed an allele-specific assay to assess TIMP1 expression in human females. Expression of two alleles was detected in some female cells with previously demonstrated extreme skewing of X inactivation, indicating TIMP1 expression from the inactive chromosome. However, in other cells, no expression of TIMP1 was observed from the inactive X chromosome, suggesting that TIMP1 inactivation is polymorphic in human females.  相似文献   

10.
Steroid sulfatase (STS) is an X-linked enzyme whose locus escapes X inactivation in human somatic cells. STS activity was determined in human fibroblasts varying in X-chromosome number from one to four. Greater STS activity was detected in 2X cell strains when compared to 1X cell strains; however, increased STS activity was not found in 3 and 4X strains as compared with the 2X strains. Greater STS activity was also observed in female hair follicles when compared with male hair follicles. These data provide evidence of a gene dosage effect at the STS locus in human tissues.  相似文献   

11.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

12.
《Epigenetics》2013,8(7):452-456
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion (~15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, ~80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.  相似文献   

13.
14.
A 2.2-kilobase cDNA clone for human arylsulfatase B (ASB) and several genomic clones were isolated and sequenced. The deduced amino acid sequence of 533 amino acids contains a 41-amino acid N-terminal signal peptide and a mature polypeptide of 492 amino acid residues. Overexpression of ASB in transfected baby hamster kidney (BHK) cells resulted in up to 68-fold higher ASB activity than in untransfected BHK cells. Pulse-chase labeling showed that ASB was synthesized and secreted as a 64-kDa precursor and processed to a 47-kDa mature form in BHK cells. The 47-kDa ASB form was located in dense lysosomes. Transport of ASB to the lysosomes was accomplished in a mannose 6-phosphate receptor-dependent manner. The ASB cDNA clone hybridizes to 4.8-, 2.5-, and 1.8-kilobase species of RNA from human fibroblasts. The same pattern was observed in RNA from fibroblasts of three Maroteaux-Lamy patients who were deficient in ASB activity, as well as in RNA from fibroblasts of three patients with multiple sulfatase deficiency, in which all known sulfatases were markedly diminished. Deduced amino acid sequences of human arylsulfatase A, human ASB, human steroid sulfatase, human glucosamine-6-sulfatase, and an arylsulfatase from sea urchin showed a substantial degree of similarity suggesting that they arose from a common ancestral gene and are members of an arylsulfatase gene family.  相似文献   

15.
Steroid sulfatase (STS; E.C.3.1.6.2), which acts on 3-hydroxysteroid sulfates, and arylsulfatase-C (ARC; E.C.3.1.6.1), assayed with aromatic artificial substrates, are both membrane-bound, microsomal enzymes with alkaline pH optima. Although they copurify during preparation and their gene loci are mapped to the short arm of the human X chromosome where they appear to have escaped from X inactivation, it has not been settled whether STS and ARC are the same enzyme or not. Recent work from our laboratory has shown that ARC exists in two electrophoretically distinct forms in human fibroblasts. We now report that these two forms--the faster migrating (F) and more slowly migrating (S)--occur in human tissues. Each of 11 human tissue types from 10 subjects showed a consistent pattern of ARC isozymes. Thyroid, heart, spleen, skeletal muscle, and adrenal tissue mainly had the S form. In contrast, kidney, liver, and pancreas tissue had mainly the F form, while gonadal, lung, and intestinal tissue had both the S and the F forms. The question of escape of their gene locus from X-chromosome inactivation was examined by comparing the specific activities of ARC and STS in male-derived vis-à-vis female-derived tissues. The majority of the tissues did not show any significant difference in these activities between the sexes, the exceptions being heart muscle, gonadal, and kidney tissue. None showed the 1:2 ratio between male- and female-derived tissues expected of a locus that had escaped X inactivation. The question of identity between ARC and STS was examined by comparing the ratios of their activities in these tissue types: if the enzymes were identical, the ratios of their activities should have remained constant across the different tissue types. It was thus shown that ARC activity varied by as much as 100-fold, depending on the ARC isozymic pattern of the tissue. STS, measured as estrone sulfatase and dehydroepiandrosterone sulfatase, did not show similar variations. This provides further evidence that ARC activity is not necessarily identical to that of STS.  相似文献   

16.
17.
The structural gene coding for human arylsulfatase B, ARSB, is assigned to 5p11----5qter by analysis of somatic cell hybrids isolated from two separate fusions of human fibroblasts carrying a translocation involving chromosome 5 with the Chinese hamster cell line a3.  相似文献   

18.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

19.
A young woman with normal gonadal development and mild mental retardation was found to have a small de novo interstitial deletion of most of band Xp21, karyotype designation 46,X,del(X) (pter----p21.3:: p21.1----qter). Replication studies on lymphocytes and skin fibroblasts revealed that in 45% of cells the normal X was late replicating. Somatic cell hybrids between her fibroblasts and HPRT-deficient Chinese hamster cells were obtained and selected for and against retention of the active human X chromosome. In several independent hybrids the deleted X was retained in the active state. Partial ornithine transcarbamylase (ornithine carbamoyltransferase EC 2.1.3.3) (OTC) deficiency was documented by elevated urinary orotic acid excretion and increased serum glutamine after a protein load. This confirms the mapping of the structural gene for OTC to this deletion. Testing of neutrophil function revealed heterozygosity for chronic granulomatous disease (CGD) suggesting that a gene for CGD maps within the deletion. Thus, X inactivation mosaicism is also present in hepatocytes and neutrophilic granulocytes. Random X inactivation in a female with an Xp deletion has not been previously reported. The cells from this patient and the somatic cell hybrids containing her deleted X chromosome in the absence of the normal X provide material for the precise mapping of X linked genes and DNA sequences on the short arm of the human X chromosome.  相似文献   

20.
Summary In cultured fibroblasts of patients with numerical and structural X chromosome aberrations the activity of steroid sulfatase (STS) is correlated with the number of functional STS gene copies. While normally, this X-linked gene is not inactivated, our data suggest that it may be subject to inactivation when carried on a structurally altered X-chromosome. Similar inactivation patterns have been reported earlier for the Xg locus which, like STS, is located on the distal protion of Xp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号