首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetrathiomolybdate, an anticopper drug, has been shown to protect mice against pulmonary fibrosis from bleomycin. Our hypothesis is that it does so by inhibiting fibrosis-inducing cytokines. Indeed, we have good evidence, not yet published, that tetrathiomolybdate inhibits pulmonary levels of transforming growth factor-beta and tumor necrosis factor-alpha expression in these bleomycin experiments. Herein, we evaluate tetrathiomolybdate's effectiveness in mitigating hepatitis and fibrosis in mice from the hepatotoxins, concanavalin A and carbon tetrachloride, and its inhibition of cytokines as a possible mechanism. In short-term experiments, concanavalin A elevated serum amino leucine transferase levels several fold, and tetrathiomolybdate completely prevented this increase. In additional experiments, tetrathiomolybdate therapy reversed the elevated serum transaminase levels despite continued concanavalin A injections, with nearly significant serum interleukin-1beta inhibition. Concanavalin A given for 12 weeks produced mild fibrosis, whereas concomitant tetrathiomolybdate treatment resulted in normal histology. Carbon tetrachloride given for 12 weeks resulted in very high serum amino leucine transferase levels, high serum transforming growth factor-beta levels, cirrhosis as seen histologically, and increase in liver hydroxyproline, a measure of fibrosis. Concomitant tetrathiomolybdate partially and significantly protected against increases in amino leucine transferase and transforming growth factor-beta, fully protected against the increase in hydroxyproline, and resulted in normal histology. In conclusion, tetrathiomolybdate protects against the hepatitis and fibrosis produced by these hepatotoxins, probably by inhibiting the excessive increase in inflammatory and fibrotic cytokines.  相似文献   

2.
Tetrathiomolybdate is an anticopper drug with a unique mechanism of action. Tetrathiomolybdate complexes copper to protein and itself, rendering the copper unavailable for cellular uptake. It was originally developed for Wilson's disease, and is now being developed as an antiangiogenic agent for the treatment of cancer. Many angiogenic cytokines require normal levels of copper, and lowered copper levels reduce cytokine signaling while cellular copper requirements are met. Cytokines of fibrosis and inflammation may be similarly copper dependent, since tetrathiomolybdate inhibits bleomycin induced pulmonary inflammation and fibrosis. The basis for this inhibition was evaluated here by examination of tetrathiomolybdate effects on cytokines in lung pathophysiologically important in the bleomycin mouse model of pulmonary damage. Results in mice injected endotracheally with bleomycin confirmed that tetrathiomolybdate therapy was effective in reducing fibrosis. This effect was associated with significant inhibition of bleomycin-induced tumor necrosis factor alpha and transforming growth factor beta expression in lung homogenates. These effects were shown to be independent of one another. This indicates that tetrathiomolybdate therapy can be effective even when fibrosis is at a more chronic stage, wherein inflammatory cytokines are playing a diminishing role. The inhibition of tumor necrosis factor alpha suggests that diseases of tumor necrosis factor alpha overexpression are also potential targets of tetrathiomolybdate therapy.  相似文献   

3.
Amin A  Hamza AA 《Life sciences》2005,77(3):266-278
As an anti-metabolite, Azathioprine inhibits the de novo and salvage pathways of purine synthesis. Intraperitoneal injection of this drug results in not only lymphocyte suppression but also toxicity to bone marrow, gastrointestinal tract, and liver. This Azathioprine-induced hepatotoxicity was found to be associated with oxidative damage. Plants with antioxidative properties have been traditionally used to prevent diseases associated with free radicals. In this report, we used water extracts of three herbal plants that have been commonly used for treating many illnesses (Hibiscus sabdariffa, Rosmarinus officinalis and Salvia officinalis). Here we show their novel hepatoprotective effects against Azathioprine-induced hepatotoxicity in rats. Typically, administration of Azathioprine induces oxidative stress through depleting the activities of antioxidants and elevating the level of malonialdehyde in liver. This escalates levels of alanine aminotransferase, and aspartate aminotranferase in serum. Pretreatment with any of the three herbal plants used in this investigation proved to have a protective effect against Azathioprine-induced hepatotoxicity. Animals pretreated with water extracts from any of the three herbs under investigation not only failed to show necrosis of the liver after azathioprine administration, but also retained livers that, for the most part, were histologically normal. In addition, these herbs blocked the induced elevated levels of alanine aminotransferase and aspartate aminotranferase in serum. The Azathioprine-induced oxidative stress was relieved to varying degrees by the examined herbal extracts. This effect was evident through reducing malonialdehyde levels and releasing the inhibitory effect of Azathioprine on the activities of glutathione, catalase and superoxide dismutase. To our knowledge, this report is the first that shows hepatoprotective effects of Hibiscus, Rosmarinus and Salvia species against Azathioprine-induced acute liver damage.  相似文献   

4.
Suramin is a polysulfonated derivative of urea and has been widely used both to treat infections and as a chemotherapeutic drug. Suramin has been shown to inhibit growth factor signaling pathways; however, its effect on apoptosis is unknown. Here we show that suramin inhibits apoptosis induced through death receptors in hepatoma and lymphoma cells. It also inhibits the proapoptotic effect of chemotherapeutic drugs. The antiapoptotic mechanism is specific to cell type and is caused by reduced activation, but not altered composition, of the death-inducing signaling complex (DISC), and by inhibition of the initiator caspases 8, 9 and 10. Suramin also shows similar effects in in vivo models: apoptotic liver damage induced by CD95 stimulation and endotoxic shock mediated by tumor-necrosis factor (TNF) are inhibited in mice, but necrotic liver damage is not inhibited in a rat model of liver transplantation. Thus, the antiapoptotic property of suramin in the liver may be therapeutically exploited.  相似文献   

5.
The objective was to evaluate whether copper lowering therapy with tetrathiomolybdate (TM) affected blood sugar levels in three rodent models of diabetes, streptozotocin (STZ) treated rats and mice, and the db/db mouse model. STZ was administered to rats and mice, and blood sugar levels were followed over a protracted time in these and non-STZ control animals. TM was administered by oral gavage (rats) or in the drinking water (mice) to a portion of the rats and mice to observe effects on blood sugar. Mice with genetically determined diabetes (db/db) were studied by giving half the mice TM in the drinking water and following blood sugar. The results show that TM caused a significant reduction in blood glucose in both STZ treated rats and mice, but no effect on blood glucose in db/db mice. However, TM caused a significant reduction in proteinuria in db/db animals. The results are discussed around the likelihood that TM is inhibiting ongoing inflammatory damage in the pancreas from STZ. A metabolic effect of TM on blood glucose is possible but seems less likely. TM is also likely inhibiting inflammatory and/or fibrogenic effects in the kidneys of db/db mice.  相似文献   

6.
Previous studies from our laboratory have demonstrated that pyruvate, an endogenous α-keto acid metabolite, has a protective effect against oxidative stress induced damage to the ocular tissues including the lens, in which in addition to exerting its protective effect against tissue damage caused by oxyradicals generated under organ culture, it is also found effective in preventing actual cataract formation in vivo in animal models undergoing direct oxidative stress as well as in diabetes. In the latter studies, pyruvate was administered mixed with diet and drinking water. However, with the view of the desirability of treating eye diseases by topical administration of the pharmacological agents, the present studies were conducted to determine the penetrability of pyruvate through the cornea to the aqueous humor and the lens following its topical administration as its ester, ethyl pyruvate (EP). These experiments were done in CD-1 mice. After instillation of the drops in the conjunctival cul-de-sac, aqueous humor samples were aspirated at the desired times and analyzed for pyruvate. In a separate group of animals, analyses were done also in the lens. Analyses were done spectrophotometrically by monitoring the decrease in absorption of NADH due to the reduction of pyruvate to lactate by lactate dehydrogenase. The levels of pyruvate were found to be significantly elevated in both the aqueous humor as well as the lens, the peak concentrations being 4.7 and 3.6 mM, respectively. Such levels have been previously shown to be effective in exerting its antioxidant effects. The results are therefore considered pharmacological significant from the point of view of its potential use for topical treatment of cataracts induced by oxidative stress and diabetes.  相似文献   

7.
《Phytomedicine》2014,21(3):254-260
Hepatic stellate cells (HSCs) are the major cell type involved in the production of extracellular matrix in liver. After liver injury, HSCs undergo transdifferentiation process from quiescent state to activated state, which plays an important role in liver fibrosis. Previous studies have shown that thymoquinone (TQ) might have protective effect against liver fibrosis in animal models; however, the underlying mechanism of action is not fully understood. The aim of this study is to examine whether TQ has any direct effect on HSCs. Our results showed that pretreatment of mice with TQ has protective effect against CCl4-induced liver injury compared to control group (untreated), which is consistent with previous studies. Moreover, our in vivo study showed that COL1A1 and α-SMA mRNA levels were significantly downregulated by TQ treatment. Similarly, in vitro study confirmed that TQ downregulated COL1A1, COL3A1 and α-SMA mRNA levels in activated rat HSCs and LX2 cells, an immortalized human hepatic stellate cell line. Pretreatment with TQ also inhibited the LPS-induced proinflammatory response in LX2 cells as demonstrated by reduced mRNA expression of IL-6 and MCP-1. Mechanistically, inactivation of NF-κB pathway is likely to play a role in the TQ-mediated inhibition of proinflammatory response in HSCs. Finally, we have shown that TQ inhibited the culture-triggered transdifferentiation of freshly isolated rat HSCs as shown by significant downregulation of mRNA expression of several fibrosis-related genes. In conclusion, our study suggests that TQ has a direct effect on HSCs, which may contribute to its overall antifibrotic effect.  相似文献   

8.
Previous investigations of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been conducted using rats. In a recent comparative study, we investigated, for the first time, the effects of fasting, refeeding, alloxan-induced diabetes, and insulin treatment on the levels of PEPCK mRNA in mouse liver, kidney, and adipose tissues. As in rats, fasting and diabetes induced, while insulin repressed, hepatic PEPCK mRNA. In contrast, the response of renal PEPCK mRNA to fasting, refeeding, and diabetes in mice differed quantitatively with that in rats: fasting caused a twofold increase in mice and a fourfold increase in rats. Moreover, diabetes, which induces renal PEPCK mRNA indirectly by causing acidosis in rats, was without effect in mice. In adipose tissue, the results of previous studies in both rats and mice have shown that the amount of PEPCK protein and its rate of synthesis are increased by fasting and diabetes and decreased by refeeding and insulin treatment. Thus, it was surprising to find that fasting, refeeding, alloxan-induced diabetes, and insulin treatment had no effect on adipose tissue PEPCK mRNA in either rats or mice.  相似文献   

9.
Diabetes, metallothionein, and zinc interactions: a review   总被引:1,自引:0,他引:1  
Epidemiological evidence, associating diabetes with zinc (Zn) deficiencies, has resulted in numerous research studies describing the effects of Zn and associated metallothionein (MT), on reducing diabetic complications associated with oxidative stress. MT has been found to have a profound effect on the reduction of oxidative stress induced by the diabetic condition. Over expression of MT in various metabolic organs has also been shown to reduce hyperglycaemia-induced oxidative stress, organ specific diabetic complications, and DNA damage in diabetic experimental animals, which have been further substantiated by the results from MT-knockout mice. Additionally, supplementation with Zn has been shown to induce in vivo MT synthesis in experimental animals and to reduce diabetes related complications in both humans and animal models. Although the results are promising, some caution regarding this topic is however necessary, due to the fact that the majority of the studies done have been animal based. Hence more human intervention trials are needed regarding the positive effects of MT and Zn before firm conclusions can be made regarding their use in the treatment of diabetes.  相似文献   

10.
11.
Cardiac progenitor cells are considered to be one of the most promising stem cells for heart regeneration and repair. The cardiac protective effect of CPCs is mainly achieved by reducing tissue damage and/or promoting tissue repair through a paracrine mechanism. Exosome is a factor that plays a major role in the paracrine effect of CPCs. By delivering microRNAs to target cells and regulating their functions, exosomes have shown significant beneficial effects in slowing down cardiac injury and promoting cardiac repair. Among them, miRNA‐210 is an important anoxic‐related miRNA derived from CPCs exosomes, which has great cardiac protective effect of inhibiting myocardial cell apoptosis, promoting angiogenesis and improving cardiac function. In addition, circulating miR‐210 may be a useful biomarker for the prediction or diagnosis of related cardiovascular diseases. In this review, we briefly reviewed the mechanism of miR‐210 derived from CPCs exosomes in cardiac protection in recent years.  相似文献   

12.
Telomeres are repeated sequences at chromosome ends that are incompletely replicated during mitosis. Telomere shortening caused by proliferation or oxidative damage culminates in replicative arrest and senescence, which may impair regeneration during chronic liver injury. Whereas the effects of experimental liver injury on telomeres have received little attention, prior studies suggest that telomerase, the enzyme complex that catalyzes the addition of telomeric repeats, is protective in some rodent liver injury models. Thus, the aim of this study was to determine the effects of iron overload on telomere length and telomerase activity in rat liver. Mean telomere lengths were similar in iron-loaded and control livers. However, telomerase activity was increased 3-fold by iron loading, with no change in levels of TERT mRNA or protein. Because thiol redox state has been shown to modulate telomerase activity in vitro, hepatic thiols were assessed. Significant increases in GSH (1.5-fold), cysteine (15-fold), and glutamate cysteine ligase activity (1.5-fold) were observed in iron-loaded livers, whereas telomerase activity was inhibited by treatment with N-ethylmaleimide. This is the first demonstration of increased telomerase activity associated with thiol alterations in vivo. Enhanced telomerase activity may be an important factor contributing to the resistance of rodent liver to iron-induced damage.  相似文献   

13.
PURPOSE OF REVIEW: Low HDL-cholesterol, diabetes mellitus and elevated C-reactive protein as well as various inflammatory diseases are risk factors for coronary heart disease. Both diabetes mellitus and inflammation decrease HDL-cholesterol. We summarize recent findings on the mechanisms underlying low HDL-cholesterol in diabetes and inflammation, as well as on novel functions of HDL that may protect not only from atherosclerosis but also from diabetes mellitus and inflammation-induced organ damage. RECENT FINDINGS: Elevated levels of non-esterified fatty acids and disturbed insulin action contribute to low HDL-cholesterol in diabetes mellitus by modifying lipolysis, apolipoprotein A-I production, as well as the activities of adenosine triphosphate-binding cassette transporter A1 and lipid transfer. Inflammation causes low HDL-cholesterol by increasing the activities of endothelial lipase and soluble phospholipase A2 and by replacing apolipoprotein A-I in HDL with serum amyloid A. HDL and lysosphingolipids therein have been identified as activators of the protein kinase Akt, which in turn is a regulator of apoptosis in beta-cells, endothelial cells, and smooth muscle cells, as well as a regulator of nitric oxide production and adhesion molecule expression in endothelial cells. SUMMARY: The protective properties of HDL in cytokine production, lipid oxidation, cholesterol efflux and reverse cholesterol transport make HDL a protective agent in inflammation-induced organ damage including diabetes mellitus. However, inflammation and diabetes cause a decrease in HDL-cholesterol concentrations and impair HDL function, placing HDL into the centre of a vicious cycle that may escalate into diabetes mellitus, inflammation-induced organ damage and atherosclerosis.  相似文献   

14.
Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). Experimental and clinical studies have shown the antidiabetic effects of Pycnogenol® (PYC). However, the protective effects of PYC on the liver, a major metabolic organ which primarily involves in glucose metabolism and maintains the normal blood glucose level in T2DM model have not been studied. The present study evaluated the beneficial effect of PYC, French maritime pine bark extract, on hyperglycemia and oxidative damage in normal and diabetic rats. Diabetes was induced by feeding rats with a high-fat diet (HFD; 40%) for 2 weeks followed by an intraperitoneal (IP) injection of streptozotocin (STZ; 40 mg/kg; body weight). An IP dose of 10 mg/kg PYC was given continually for 4 weeks after diabetes induction. At the end of the 4-week period, blood was drawn and the rats were then sacrificed, and their livers dissected for biochemical and histopathological assays. In the HFD/STZ group, levels of glycosylated hemoglobin (HbA1c), significantly increased, while hepatic glycogen level decreased. PYC supplementation significantly reversed these parameters. Moreover, supplementation with PYC significantly ameliorated thiobarbituric reactive substances, malonaldehyde, protein carbonyl, glutathione and antioxidant enzymes [glutathione-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase] in the liver of HFD/STZ rats. These results were supported with histopathological examinations. Although detailed studies are required for the evaluation of the exact protective mechanism of PYC against diabetic complications, these preliminary experimental findings demonstrate that PYC exhibits antidiabetic effects in a rat model of type 2 DM by potentiating the antioxidant defense system. These finding supports the efficacy of PYC for diabetes management.  相似文献   

15.
The endogenous monoamine 1-methyl-1,2,3,4-tetrahydroisoquinoline has been shown to prevent the neurotoxic effect of MPP(+) and other endogenous neurotoxins, which produce a parkinsonian-like syndrome in humans. We have tested its potential protective effect in vivo by measuring the protection of 1-methyl-1,2,3,4-tetrahydroisoquinoline in the neurotoxicity elicited by MPP(+) in rat striatum by tyrosine hydroxylase immunocytochemistry. Because we know that cellular damage caused by MPP(+) is primarily the result of mitochondrial respiratory inhibition at the complex I level, we have extended the study further to understand this protective mechanism. We found that the inhibitory effect on the mitochondrial respiration rate induced by MPP(+) in isolated rat liver mitochondria and striatal synaptosomes was prevented by addition of 1-methyl-1,2,3,4-tetrahydroisoquinoline. This compound has no antioxidant capacity; therefore, this property is not involved in its protective effect. Thus, we postulate that the preventive effect that 1-methyl-1,2,3,4-tetrahydroisoquinoline has on mitochondrial inhibition for MPP(+) could be due to a "shielding effect," protecting the energetic machinery, thus preventing energetic failure. These results suggest that this endogenous amine may protect against the effect of several parkinsonism-inducing compounds that are associated with progressive impairment of the mitochondrial function.  相似文献   

16.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

17.
18.
Sulforaphane (SFN) is a compound derived from cruciferous plants. Its anticancer properties have been demonstrated both, in cancer cell lines as well as tumors in animal models. It has been shown that SFN inhibits cell proliferation, induces apoptosis, autophagy, and sensitizes cancer cells to therapies. As induction of catabolic processes is often related to perturbation in protein synthesis we aimed to investigate the impact of SFN on this process in PC-3 human prostate cancer cells. In the present study we show that SFN inhibits protein synthesis in PC-3 cells in a dose- and time-dependent manner which is accompanied by a decreased phosphorylation of mTOR substrates. Translation inhibition is independent of mitochondria-derived ROS as it is observed in PC-3 derivatives devoid of functional mitochondrial respiratory chain (Rho0 cells). Although SFN affects mitochondria and slightly decreases glycolysis, the ATP level is maintained on the level characteristic for control cells. Inhibition of protein synthesis might be a protective response of prostate cancer cells to save energy. However, translation inhibition contributes to the death of PC-3 cells due to decreased level of a short-lived protein, survivin. Overexpression of this anti-apoptotic factor protects PC-3 cells against SFN cytotoxicity. Protein synthesis inhibition by SFN is not restricted to prostate cancer cells as we observed similar effect in SKBR-3 breast cancer cell line.  相似文献   

19.
Ingestion of broccoli or other cruciferous vegetables inhibits the induction of cancer by chemicals and modifies some cytochrome P-450 enzyme activities. The effect of dietary broccoli on the levels of P450IA and IIB mRNA and proteins in rat liver and colon has been studied. Rats were fed a ten percent broccoli diet for 7 days. The expression of the cytochrome P-450 forms was altered to a different extent in the liver and colon. The level of total P450IA mRNA in the liver was increased by the broccoli together with the P450IA1 and IA2 proteins. Colonic P450IA1 mRNA and protein were induced by the broccoli diet, whereas only P450IA2 protein and not mRNA was detectable in colon, but the protein level was unaffected by the broccoli diet. Liver P450IIB and IIE1 proteins were increased by the broccoli diet, whereas the level of P450IIB mRNAs was not affected. In contrast, the P450IIB mRNA levels were reduced but the protein levels were increased in colon and we suggest that a feedback mechanism caused the decrease of the P450IIB mRNAs levels. Because the ratio between activation and deactivation may be an important risk determinant, we conclude that the protective effect of the broccoli diet on chemically induced tumors in rodents may be caused by the broccoli-induced changes in P450IA and IIB associated enzyme activities.  相似文献   

20.
TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号