首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15–20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10–5 min 25% and during the prior 20–10 min 10%.  相似文献   

2.
This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing applied to Stolwijk’s human thermal model. The main feature of the model is the division of the skin surface into three parts: a dry part, a wet part without water flow, and a wet part with water flow. The area ratio of each part is decided by a simple formula developed from a geometrical approach based on the shape of the Stolwijk’s human thermal model. At the same time, the convective heat transfer coefficient between the skin and the flowing water is determined experimentally. The proposed model is validated by a comparison with the results of human subject experiments under controlled and free shower conditions. The model predicts the mean skin temperature during shower fairly well both for controlled and free shower bathing styles.  相似文献   

3.
The literature is very sparse regarding research on the thermal equilibrium in Guzerat cattle (Bos indicus) under field conditions. Some factors can modify the physiological response of Guzerat cattle, such as the reactivity of these animals to handling. Thus, the development of a methodology to condition and select Guzerat cattle to acclimate them to the routine collection of data without altering their physiological response was the objective of the preliminary experiment. Furthermore, the animals selected were used in the main experiment to determine their thermal equilibrium according to the thermal environment. For this proposal, the metabolic heat production and heat exchange between the animal and the environment were measured simultaneously in the field with an indirect calorimetry system coupled to a facial mask. The results of the preliminary experiment showed that the respiratory rate could demonstrate that conditioning efficiently reduced the reactivity of the animals to experimental handling. Furthermore, the respiratory rate can be used to select animals with less reactivity. The results of the main experiment demonstrate that the skin, hair-coat surface and expired air temperature depend on the air temperature, whereas the rectal temperature depends on the time of day; consequently, the sensible heat flow was substantially reduced from 70 to 20 W m−2 when the air temperature increased from 24 to 34 °C. However, the respiratory latent heat flow increased from 10 to 15 W m−2 with the same temperature increase. Furthermore, the metabolic heat production remained stable, independent of the variation of the air temperature; however, it was higher in males than in females (by approximately 25%). This fact can be explained by the variation of the ventilation rate, which had a mean value of 1.6 and 2.2 L s−1 for females and males, respectively.  相似文献   

4.
This paper studies the relationships among human physiological and psychological thermal and moisture responses in tight-fit aerobic wear. Results showed that both physiological and psychological responses were significantly influenced by time, garment, body location and some of their interactions. Objectively measured skin humidity and moisture sensation at individual locations were highly correlated and significant at p levels of 0.01. Overall clothing comfort may be best described with thermal sensation at outer thigh, humidity at inner thigh. The correlation coefficient of predicted with experimental clothing comfort score was 0.76, and a t-test showed that there was no significant difference between the two data sets.  相似文献   

5.
Cryosurgery has become a well-established technique for the ablation of undesirable tissues such as tumors and cancers. The motivation for this study is to improve the efficacy and safety of this technique. This study presents an inverse heat transfer method for monitoring the motion of the freezing front from a cryoprobe. With the help of a thermocouple inserted into the layer of diseased tissue, the inverse heat transfer method estimates simultaneously the blood perfusion rate and the thermal conductivities of both frozen and unfrozen tissues. This information is then fed to the Pennes bioheat equation that: (1) calculates the time-varying temperature distribution inside the layer of tissue and (2) predicts the motion of the freezing front. The effect of the most influential parameters on the inverse predictions is investigated. These parameters are (1) the initial guesses for the unknown Levenberg-Marquardt polynomial parameters of the thermo-physical properties; (2) the temperature of the cryoprobe; (3) the heat transfer coefficient of the impinging jet of liquid nitrogen; and (4) the noise on the temperature data recorded by the thermocouple probe. Results show that the proposed inverse method is a promising alternative to ultrasound and Magnetic Resonance Imaging (MRI) for monitoring the motion of the freezing front during cryosurgery. For all the cryogenic scenarios simulated, the predictions of the inverse model remain accurate and stable.  相似文献   

6.
7.
Exposure to hot and humid conditions results in physiological changes in metabolism, cardiac output and thermoregulation of the young adult and these changes deviate with elderly due to aging. The elderly population is more vulnerable than the healthy and young population due to age-weakened physiology and thermoregulatory functions. There are, however, limited bioheat models addressing such changes due to hot exposure in the young and the elderly. This paper develops robust bioheat models for young and elderly while incorporating the physiological changes under exposure to heat-stressful conditions for both age groups the age-related changes in physiology and thermoregulation to an elderly human. However, due to a large variability of thermoregulation among the elderly population, a sensitivity analysis revealed that the average elderly is characterized by metabolic rate and cardiac output, which are lower than those of the young by 21% and 14.4%, respectively. Moreover, the thresholds of the onset of vasodilation and sweating are delayed from those of young adults by 0.5 °C and 0.21 °C, respectively.The elderly and young bioheat models were validated with number of independent published experimental studies under hot exposures in steady and transient conditions. Model predictions of core and mean skin temperatures showed good agreement with published experimental data with a discrepancy of 0.1 °C and 0.5 °C, respectively.  相似文献   

8.
9.
The work described in this paper investigated the effects of two types of clothing, leaving the legs covered or uncovered, on seasonal cold acclimation in women. Experiments were carried out to observe the different thermal physiological responses between two groups of subjects, who dressed themselves in kneelength skirts or trousers during the daytime for 3 months from September to November. It was found that rectal temperatures and heart rates in the subjects wearing skirts were shifted to lower levels when the season gradually became colder. The results suggest that the clothing type worn in daily life may play a potential role in seasonal cold acclimation of thermal physiological responses in man.  相似文献   

10.
A mathematical model for predicting human thermal and regulatory responses in cold, cool, neutral, warm, and hot environments has been developed and validated. The multi-segmental passive system, which models the dynamic heat transport within the body and the heat exchange between body parts and the environment, is discussed elsewhere. This paper is concerned with the development of the active system, which simulates the regulatory responses of shivering, sweating, and peripheral vasomotion of unacclimatised subjects. Following a comprehensive literature review, 26 independent experiments were selected that were designed to provoke each of these responses in different circumstances. Regression analysis revealed that skin and head core temperature affect regulatory responses in a non-linear fashion. A further signal, i.e. the rate of change of the mean skin temperature weighted by the skin temperature error signal, was identified as governing the dynamics of thermoregulatory processes in the cold. Verification and validation work was carried out using experimental data obtained from 90 exposures covering a range of steady and transient ambient temperatures between 5°C and 50°C and exercise intensities between 46 W/m2 and 600 W/m2. Good general agreement with measured data was obtained for regulatory responses, internal temperatures, and the mean and local skin temperatures of unacclimatised humans for the whole spectrum of climatic conditions and for different activity levels. Received: 20 November 2000 / Revised: 24 April 2001 / Accepted: 14 May 2001  相似文献   

11.
Thermal shock and dilution shock as the causes of freezing injury   总被引:7,自引:0,他引:7  
J Farrant  G J Morris 《Cryobiology》1973,10(2):134-140
We suggest that during slow freezing, cellular membranes are altered by the hypertonic solutions produced. This alteration in itself does not cause membrane leakage of normally impermeant solutes but it renders the cells susceptible to solute leakage on the application of a stress, which is provided during freezing by the reduction in temperature (thermal shock) and during thawing by dilution (dilution shock).During slow freezing the effects of cooling rate changes are due to the different times available for the hypertonic solutions to affect the membrane. At a given cooling rate cryoprotective agents reduce the effect on the cells at each temperature during freezing perhaps by reducing the ionic strength. The thermal shock stress during cooling and the dilution shock during thawing thus damages the cells less. With rapid freezing, there is insufficient time for these effects to take place during cooling, which allows the cells to reach low temperatures without thermal shock damage. However, the presence of extracellular ice and the formation of intracellular ice provide hypertonic conditions that render the cells liable to dilution shock on thawing. The slower the rate of thawing of rapidly cooled cells the greater will be the damage from this dilution shock.  相似文献   

12.
The use of a programmable forced vapour biological freezer to optimise freezing conditions for bovine semen is described. The results showed that for most bulls, optimisation is possible, including bulls whose semen shows poor survival with conventional freezing methods. The importance of inducing ice crystallisation before any significant degree of supercooling occurs is also demonstrated, as the majority of sperm are lost in this region of the freezing curve. Comparison with static vapour freezing shows enhanced post thaw sperm survival, particularly with bulls whose semen shows poor survival using conventional freezing methods.  相似文献   

13.
Cold responses of Arabidopsis mutants impaired in freezing tolerance   总被引:9,自引:0,他引:9  
Mutants of Arabidopsis thaliana L. (Heynh), characterized asdeficient in their freezing tolerance after cold acclimation,were surveyed for some of the normal responses to cold exposure.In foliar tissue, the coldinducibility of three proteins, thelevels of sucrose and glucose, the fatty acyl composition oflipids, and the accumulation of anthocyanin was examined. Fourmutations (sfr3, sfr4, sfr6, and sfr7) reduced or eliminatedthe accumulation of anthocyanin during cold acclimation. Onemutation (sfr4) prevented the normally cold-induced elevationof sucrose and glucose levels; both sfr4 and another mutation(sfr7) affected fatty acid composition after (and only after)cold acclimation. On the other hand mutations sfr1, sfr2 andsfr5 did not differ significantly from the wild type in anyof the parameters tested, suggesting that they have other, perhapshighly specific, effects on lowtemperature responses. Key words: Arabidopsis thaliana, cold acclimation, freezing tolerance, mutation  相似文献   

14.
15.
This paper reports the results of an experimental study of the warming and cooling rates achieved using the popular Nakagata Protocol for murine sperm cryopreservation. Problems with the storage and maintenance of the huge number of genetically engineered mouse strains have led to an increased need for murine sperm preservation. Recent studies have begun to focus on optimizing the cryopreservation of murine sperm by carefully studying the effects of cooling and warming rates on sperm survival. In current practice, however, the Nakagata protocol is widely used. The actual cooling and warming rates achieved using the Nakagata protocol have not previously been determined; and the Nakagata protocol has a number of unspecified parameters which we have found can significantly affect cooling rates, warming rates and sperm survival. A detailed study of the thermal response of samples frozen and thawed using the Nakagata protocol reveals that the cooling rates range from 30 to almost 300 °C per minute depending on the exact manner in which the Nakagata protocol is implemented. Warming rates range from 160 °C/min to about 1000 °C/min. Sperm survival depended significantly on the particular cooling rate achieved, and less strongly on the warming rates. Overall, it was found that the particular manner in which the Nakagata protocol was implemented could strongly affect cooling rates and sperm survival; and, consistent with the findings of Mazur and Koshimoto, an optimal cooling rate appears to exist in the range of cooling rates that can be achieved using the Nakagata protocol.  相似文献   

16.
Eight females and eight males participated each in 4 comfort experiments on 4 different days. Two experiments took place in the morning and two in the evening. In each experiment (21/2 hours) the preferred ambient temperature was determined for each subject by adjusting the ambient temperature according to his wishes. The subjects were sedentary. Skin temperatures, rectal temperature and evaporative weight loss were measured. Although the rectal temperature and the mean skin temperature were slightly higher in the evening than in the morning the subjects did not prefer an ambient temperature which was different from that in the morning. This indicates that the same thermal comfort conditions can be used from morning to evening.  相似文献   

17.
The important requirement that COST Action 730 demanded of the physiological model to be used for the Universal Thermal Climate Index (UTCI) was its capability of accurate simulation of human thermophysiological responses across a wide range of relevant environmental conditions, such as conditions corresponding to the selection of all habitable climates and their seasonal changes, and transient conditions representing the temporal variation of outdoor conditions. In the first part of this study, available heat budget/two-node models and multi-node thermophysiological models were evaluated by direct comparison over a wide spectrum of climatic conditions. The UTCI-Fiala model predicted most reliably the average human thermal response, as shown by least deviations from physiologically plausible responses when compared to other models. In the second part of the study, this model was subjected to extensive validation using the results of human subject experiments for a range of relevant (steady-state and transient) environmental conditions. The UTCI-Fiala multi-node model proved its ability to predict adequately the human physiological response for a variety of moderate and extreme conditions represented in the COST 730 database. The mean skin and core temperatures were predicted with average root-mean-square deviations of 1.35 ± 1.00°C and 0.32 ± 0.20°C, respectively.  相似文献   

18.
19.
P K Rangachari  D McWade 《Life sciences》1986,38(18):1641-1652
A novel epithelial preparation from proximal canine colon, devoid of its underlying muscularis mucosa, was studied in Ussing chambers and its responses to added agonists compared with those of a conventional full mucosal preparation. We assumed that the responses elicited from the former would reflect direct action of agonists on epithelial cells, and from the latter both direct and indirect effects mediated by functioning nerves in the attached submucosal plexus. Responses of the two preparations to tetrodotoxin, ouabain, scorpion venom, and field stimulation were different, the differences being explicable on the basis of functioning nerves in the mucosal preparation. Histamine stimulated both preparations; the increase in short-circuit current seen with the mucosal but not the epithelial preparation was inhibited by tetrodotoxin. Serotonin was a better stimulant of the epithelial preparation. Basal absorptions of both Na+ and Cl- were seen in both mucosa and epithelium, but net absorptions were significantly greater in the latter, suggesting tonic neuronal inhibition of absorption in the mucosa. These two preparations would prove useful in analysing direct and indirect effects of agonists on colonic transport.  相似文献   

20.
In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, both chilling-sensitive and chilling-resistant plant cells were supercooled. Upon freezing at -2 degrees C, by contrast, intracellular freezing occurred in Saintpaulia leaf cells, frost plasmolysis followed by intracellular freezing occurred in mungbean seedling cells, and extracellular freezing (cytorrhysis) occurred in orchid leaf cells. We postulate that chilling-related destabilization of membranes might result in the loss of the ability of the plasma membrane to act as a barrier against the propagation of extracellular ice in chilling-sensitive plant cells. We also examined the role of cell walls in the response to freezing using cells in which the plasma membrane had been disrupted by repeated freezing and thawing. In chilling-sensitive Saintpaulia and mungbean cells, the cells with a disrupted plasma membrane responded to freezing at -2 degrees C by intracellular freezing. By contrast, in chilling-resistant orchid cells, as well as in other cells of chilling-resistant and freezing-resistant plant tissues, including leaves of orchard grass ( Dactylis glomerata L.), leaves of Arabidopsis thaliana (L.) Heynh. and cortical tissues of mulberry ( Morus bombycis Koids.), cells with a disrupted plasma membrane responded to freezing by extracellular freezing. Our results indicate that, in the chilling-sensitive plants cells that we examined, not only the plasma membrane but also the cell wall lacked the ability to serve as a barrier against the propagation of extracellular ice, whereas in the chilling-resistant plant cells that we examined, not only the plasma membrane but also the cell wall acted as a barrier against the propagation of extracellular ice. It appears, therefore, that not only the plasma membrane but also the cell wall greatly influences the freezing behavior of plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号