首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson’s disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit in vivo recordings from parkinsonian monkeys, and evaluated its response to STN DBS. The network model was created with synaptically connected single compartment biophysical models of STN and pallidal neurons, and stochastically defined inputs driven by cortical beta rhythms. A least mean square error training algorithm was developed to parameterize network connections and minimize error when compared to experimental spike and burst rates in the parkinsonian condition. The output of the trained network was then compared to experimental data not used in the training process. We found that reducing the influence of the cortical beta input on the model generated activity that agreed well with recordings from normal monkeys. Further, during STN DBS in the parkinsonian condition the simulations reproduced the reduction in GPi bursting found in existing experimental data. The model also provided the opportunity to greatly expand analysis of GPi bursting activity, generating three major predictions. First, its reduction was proportional to the volume of STN activated by DBS. Second, GPi bursting decreased in a stimulation frequency dependent manner, saturating at values consistent with clinically therapeutic DBS. And third, ablating STN neurons, reported to generate similar therapeutic outcomes as STN DBS, also reduced GPi bursting. Our theoretical analysis of stimulation induced network activity suggests that regularization of GPi firing is dependent on the volume of STN tissue activated and a threshold level of burst reduction may be necessary for therapeutic effect.  相似文献   

2.

Background

GPi (Internal globus pallidus) DBS (deep brain stimulation) is recognized as a safe, reliable, reversible and adjustable treatment in patients with medically refractory dystonia.

Objectives

This report describes the long-term clinical outcome of 36 patients implanted with GPi DBS at the Neurosurgery Department of Seoul National University Hospital.

Methods

Nine patients with a known genetic cause, 12 patients with acquired dystonia, and 15 patients with isolated dystonia without a known genetic cause were included. When categorized by phenomenology, 29 patients had generalized, 5 patients had segmental, and 2 patients had multifocal dystonia. Patients were assessed preoperatively and at defined follow-up examinations postoperatively, using the Burke-Fahn-Marsden dystonia rating scale (BFMDRS) for movement and functional disability assessment. The mean follow-up duration was 47 months (range, 12–84)

Results

The mean movement scores significantly decreased from 44.88 points preoperatively to 26.45 points at 60-month follow up (N = 19, P = 0.006). The mean disability score was also decreased over time, from 11.54 points preoperatively to 8.26 points at 60-month follow up, despite no statistical significance (N = 19, P = 0.073). When analyzed the movement and disability improvement rates at 12-month follow up point, no significant difference was noted according to etiology, disease duration, age at surgery, age of onset, and phenomenology. However, the patients with DYT-1 dystonia and isolated dystonia without a known genetic cause showed marked improvement.

Conclusions

GPi DBS is a safe and efficient therapeutic method for treatment of dystonia patients to improve both movement and disability. However, this study has some limitations caused by the retrospective design with small sample size in a single-center.  相似文献   

3.
High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia.  相似文献   

4.

Objective

Recent advances in different MRI sequences have enabled direct visualization and targeting of the Globus pallidus internus (GPi) for DBS surgery. Modified Driven Equilibrium Fourier Transform (MDEFT) MRI sequences provide high spatial resolution and an excellent contrast of the basal ganglia with low distortion. In this study, we investigate if MDEFT sequences yield accurate and reliable targeting of the GPi and compare direct targeting based on MDEFT sequences with atlas-based targeting.

Methods

13 consecutive patients considered for bilateral GPi-DBS for dystonia or PD were included in this study. Preoperative targeting of the GPi was performed visually based on MDEFT sequences as well as by using standard atlas coordinates. Postoperative CT imaging was performed to calculate the location of the implanted leads as well as the active electrode(s). The coordinates of both visual and atlas based targets were compared. The stereotactic coordinates of the lead and active electrode(s) were calculated and projected on the segmented GPi.

Results

On MDEFT sequences the GPi was well demarcated in most patients. Compared to atlas-based planning the mean target coordinates were located significantly more posterior. Subgroup analysis showed a significant difference in the lateral coordinate between dystonia (LAT = 19.33 ± 0.90) and PD patients (LAT = 20.67 ± 1.69). Projected on the segmented preoperative GPi the active contacts of the DBS electrode in both dystonia and PD patients were located in the inferior and posterior part of the structure corresponding to the motor part of the GPi.

Conclusions

MDEFT MRI sequences provide high spatial resolution and an excellent contrast enabling precise identification and direct visual targeting of the GPi. Compared to atlas-based targeting, it resulted in a significantly different mean location of our target. Furthermore, we observed a significant variability of the target among the PD and dystonia subpopulation suggesting accurate targeting for each individual patient.  相似文献   

5.
6.
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.  相似文献   

7.
Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is an established surgical technique for the treatment of movement disorders. The objective of this study was to propose a computational stereotactic model of the electrical distribution around the electrode within the targeted GPi in order to optimize parameter adjustment in clinical practice. The outline of the GPi can be defined precisely by using stereotactic magnetic resonance imaging (MRI) and from this it is possible to model its three-dimensional structure. The electrode and the distribution of the patient-specific parameters can then be co-registered with the GPi volume. By using this methodology, it is possible to visualize and measure the relationship between the electrical distribution of patient-specific parameters and the morphology of the GPi. The model could be applied in clinical practice to help determine the threshold for achieving a therapeutic effect and consequently may aid in optimizing parameter settings for individual patients.  相似文献   

8.
We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. The original Rubin and Terman model was able to reproduce both the physiological and pathological activities of STN, GPi, GPe and thalamo-cortical (TC) relay cells. In the present study, we introduced a representation of the direct pathway of the BGS, allowing a more complete framework to simulate DBS and to interpret its network effects in the BGS. Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS.  相似文献   

9.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

10.
Deep brain stimulation (DBS) is a widely used and effective therapy for several neurologic disorders, such as idiopathic Parkinson’s disease, dystonia or tremor. DBS is based on the delivery of electrical stimuli to specific deep anatomic structures of the central nervous system. However, the mechanisms underlying the effect of DBS remain enigmatic. This has led to an interest in investigating the impact of DBS in animal models, especially in rats. As DBS is a long-term therapy, research should be focused on molecular-genetic changes of neural circuits that occur several weeks after DBS. Long-term DBS in rats is challenging because the rats move around in their cage, which causes problems in keeping in place the wire leading from the head of the animal to the stimulator. Furthermore, target structures for stimulation in the rat brain are small and therefore electrodes cannot easily be placed at the required position. Thus, a set-up for long-lasting stimulation of rats using platinum/iridium electrodes with an impedance of about 1 MΩ was developed for this study. An electrode with these specifications allows for not only adequate stimulation but also recording of deep brain structures to identify the target area for DBS. In our set-up, an electrode with a plug for the wire was embedded in dental cement with four anchoring screws secured onto the skull. The wire from the plug to the stimulator was protected by a stainless-steel spring. A swivel was connected to the circuit to prevent the wire from becoming tangled. Overall, this stimulation set-up offers a high degree of free mobility for the rat and enables the head plug, as well as the wire connection between the plug and the stimulator, to retain long-lasting strength.  相似文献   

11.
Deep brain stimulation (DBS) of the subthalamic nucleus, typically with periodic, high frequency pulse trains, has proven to be an effective treatment for the motor symptoms of Parkinson’s disease (PD). Here, we use a biophysically-based model of spiking cells in the basal ganglia (Terman et al., Journal of Neuroscience, 22, 2963–2976, 2002; Rubin and Terman, Journal of Computational Neuroscience, 16, 211–235, 2004) to provide computational evidence that alternative temporal patterns of DBS inputs might be equally effective as the standard high-frequency waveforms, but require lower amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine the extent to which DBS causes Gpi (globus pallidus pars interna) synaptic outputs, which are burstlike and synchronized in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated thalamocortical cells. Second, we evaluate how DBS affects the GPi cells’ auto- and cross-correlograms. In both cases, a nonlinear closed-loop learning algorithm identifies effective DBS inputs that are optimized to have minimal strength. The network dynamics that result differ from the regular, entrained firing which some previous studies have associated with conventional high-frequency DBS. This type of optimized solution is also found with heterogeneity in both the intrinsic network dynamics and the strength of DBS inputs received at various cells. Such alternative DBS inputs could potentially be identified, guided by the model-free learning algorithm, in experimental or eventual clinical settings. Action Editor: Steven J. Schiff Xiao-Jiang Feng and Eric Shea-Brown contributed equally to this work.  相似文献   

12.

Objective

Impulse control disorders (ICDs) and dopamine dysregulation syndrome (DDS) are important behavioral problems that affect a subpopulation of patients with Parkinson''s disease (PD) and typically result in markedly diminished quality of life for patients and their caregivers. We aimed to investigate the effects of subthalamic nucleus (STN) and internal globus pallidus (GPi) deep brain stimulation (DBS) on ICD/DDS frequency and dopaminergic medication usage.

Methods

A retrospective chart review was performed on 159 individuals who underwent unilateral or bilateral PD DBS surgery in either STN or GPi. According to published criteria, pre- and post-operative records were reviewed to categorize patients both pre- and post-operatively as having ICD, DDS, both ICD and DDS, or neither ICD nor DDS. Group differences in patient demographics, clinical presentations, levodopa equivalent dose (LED), and change in diagnosis following unilateral/bilateral by brain target (STN or GPi DBS placement) were examined.

Results

28 patients met diagnostic criteria for ICD or DDS pre- or post-operatively. ICD or DDS classification did not differ by GPi or STN target stimulation. There was no change in DDS diagnosis after unilateral or bilateral stimulation. For ICD, diagnosis resolved in 2 of 7 individuals after unilateral or bilateral DBS. Post-operative development of these syndromes was significant; 17 patients developed ICD diagnoses post-operatively with 2 patients with pre-operative ICD developing DDS post-operatively.

Conclusions

Unilateral or bilateral DBS did not significantly treat DDS or ICD in our sample, even though a few cases of ICD resolved post-operatively. Rather, our study provides preliminary evidence that DDS and ICD diagnoses may emerge following DBS surgery.  相似文献   

13.
Deep brain stimulation   总被引:9,自引:0,他引:9  
During the last decade deep brain stimulation (DBS) has become a routine method for the treatment of advanced Parkinsons disease (PD), leading to striking improvements in motor function and quality of life of PD patients. It is associated with minimal morbidity. The rationale of targeting specific structures within basal ganglia such as the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) is strongly supported by the current knowledge of the basal ganglia pathophysiology, which is derived from extensive experimental work and which provides the theoretical basis for surgical therapy in PD. In particular, the STN has advanced to the worldwide most used target for DBS in the treatment of PD, due to the marked improvement of all cardinal symptoms of the disease. Moreover on-period dyskinesias are reduced in parallel with a marked reduction of the equivalent daily levodopa dose following STN–DBS. The success of the therapy largely depends on the selection of the appropriate candidate patients and on the precise implantation of the stimulation electrode, which necessitates careful imaging-based pre-targeting and extensive electrophysiological exploration of the target area. Despite the clinical success of the therapy, the fundamental mechanisms of high-frequency stimulation are still not fully elucidated. There is a large amount of evidence from experimental and clinical data that stimulation frequency represents a key factor with respect to clinical effect of DBS. Interestingly, high-frequency stimulation mimics the functional effects of ablation in various brain structures. The main hypotheses for the mechanism of high-frequency stimulation are: (1) depolarization blocking of neuronal transmission through inactivation of voltage dependent ion-channels, (2) jamming of information by imposing an efferent stimulation-driven high-frequency pattern, (3) synaptic inhibition by stimulation of inhibitory afferents to the target nucleus, (4) synaptic failure by stimulation-induced neurotransmitter depletion. As the hyperactivity of the STN is considered a functional hallmark of PD and as there is experimental evidence for STN-mediated glutamatergic excitotoxicity on neurons of the substantia nigra pars compacta (SNc), STN–DBS might reduce glutamatergic drive, leading to neuroprotection. Further studies will be needed to elucidate if STN–DBS indeed provides a slow-down of disease progression.  相似文献   

14.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

15.

Objective

To study mood and behavioral effects of unilateral and staged bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) for Parkinson''s disease (PD).

Background

There are numerous reports of mood changes following DBS, however, most have focused on bilateral simultaneous STN implants with rapid and aggressive post-operative medication reduction.

Methods

A standardized evaluation was applied to a subset of patients undergoing STN and GPi DBS and who were also enrolled in the NIH COMPARE study. The Unified Parkinson Disease Rating Scale (UPDRS III), the Hamilton depression (HAM-D) and anxiety rating scales (HAM-A), the Yale-Brown obsessive-compulsive rating scale (YBOCS), the Apathy Scale (AS), and the Young mania rating scale (YMRS) were used. The scales were repeated at acute and chronic intervals. A post-operative strategy of non-aggressive medication reduction was employed.

Results

Thirty patients were randomized and underwent unilateral DBS (16 STN, 14 GPi). There were no baseline differences. The GPi group had a higher mean dopaminergic dosage at 1-year, however the between group difference in changes from baseline to 1-year was not significant. There were no differences between groups in mood and motor outcomes. When combining STN and GPi groups, the HAM-A scores worsened at 2-months, 4-months, 6-months and 1-year when compared with baseline; the HAM-D and YMRS scores worsened at 4-months, 6-months and 1-year; and the UPDRS Motor scores improved at 4-months and 1-year. Psychiatric diagnoses (DSM-IV) did not change. No between group differences were observed in the cohort of bilateral cases.

Conclusions

There were few changes in mood and behavior with STN or GPi DBS. The approach of staging STN or GPi DBS without aggressive medication reduction could be a viable option for managing PD surgical candidates. A study of bilateral DBS and of medication reduction will be required to better understand risks and benefits of a bilateral approach.  相似文献   

16.

Background  

There is an ongoing discussion about age limits for deep brain stimulation (DBS). Current indications for DBS are tremor-dominant disorders, Parkinson's disease, and dystonia. Electrode implantation for DBS with analgesia and sedation makes surgery more comfortable, especially for elderly patients. However, the value of DBS in terms of benefit-risk ratio in this patient population is still uncertain.  相似文献   

17.
18.
深部脑刺激器(deep brain stimulator),也经常被称为脑起搏器,是可植入人体设备,并连续不断地传送刺激脉冲到深部脑组织的特定区域,即所谓的深部脑刺激(deep brain stimulation,DBS).迄今为止,深部脑刺激是治疗严重顽固抗药性运动障碍疾病(如帕金森病,原发性震颤及肌张力异常等)的最有效的外科治疗手段之一.此外,广大的科研工作者也不断地探索应用DBS治疗其他神经及精神异常(如,癫痫和强迫症)的新的临床应用.尽管应用DBS治疗运动障碍非常有效,并也迅速被探索性地应用到其他神经障碍治疗中,但其作用机制仍然不是十分清楚,成为学者们争论的热点.DBS治疗效果的作用机制通常有两种基本的观点:高频刺激抑制学说及高频刺激兴奋学说.基于最近发表的关于中枢神经系统内的高频刺激效应的资料、数据及相关评论,两种机制共存并发挥作用的DBS作用假说被提出,认为DBS通过施加高频刺激干扰并控制了核团病理性紊乱随机活动,同时施加兴奋性刺激到其他基底节的网络,以实现对帕金森病的治疗.  相似文献   

19.
Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.  相似文献   

20.
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays1-3.Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its ''electrical distance''. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons4. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号