首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
《IRBM》2022,43(4):290-299
ObjectiveIn this research paper, the brain MRI images are going to classify by considering the excellence of CNN on a public dataset to classify Benign and Malignant tumors.Materials and MethodsDeep learning (DL) methods due to good performance in the last few years have become more popular for Image classification. Convolution Neural Network (CNN), with several methods, can extract features without using handcrafted models, and eventually, show better accuracy of classification. The proposed hybrid model combined CNN and support vector machine (SVM) in terms of classification and with threshold-based segmentation in terms of detection.ResultThe findings of previous studies are based on different models with their accuracy as Rough Extreme Learning Machine (RELM)-94.233%, Deep CNN (DCNN)-95%, Deep Neural Network (DNN) and Discrete Wavelet Autoencoder (DWA)-96%, k-nearest neighbors (kNN)-96.6%, CNN-97.5%. The overall accuracy of the hybrid CNN-SVM is obtained as 98.4959%.ConclusionIn today's world, brain cancer is one of the most dangerous diseases with the highest death rate, detection and classification of brain tumors due to abnormal growth of cells, shapes, orientation, and the location is a challengeable task in medical imaging. Magnetic resonance imaging (MRI) is a typical method of medical imaging for brain tumor analysis. Conventional machine learning (ML) techniques categorize brain cancer based on some handicraft property with the radiologist specialist choice. That can lead to failure in the execution and also decrease the effectiveness of an Algorithm. With a brief look came to know that the proposed hybrid model provides more effective and improvement techniques for classification.  相似文献   

2.
目的:针对GVF Snake模型算法收敛容易陷入局部极小值及对初始轮廓位置敏感等缺点,提出一种动态方向梯度矢量流模型(DDGVF),使其更适合医学图像的分割。方法:利用主动轮廓模型的提取和跟踪特定区域内目标轮廓的方法,将其应用于医学图像如CT、MRI和超声图像的处理,以获取特定器官及组织的轮廓。结果:动态方向梯度矢量流场(DDGVF)能够较好地提取出脑肿瘤图像。结论:利用该方法能够较好地分割提取出脑肿瘤图像的肿瘤病变区域,为进一步对其纹理和形状等特征进行描述和分析提供了可靠的依据。  相似文献   

3.
Classification of brain tumor in Magnetic Resonance Imaging (MRI) images is highly popular in treatment planning, early diagnosis, and outcome evaluation. It is very difficult for classifying and diagnosing tumors from several images. Thus, an automatic prediction strategy is essential in classifying brain tumors as malignant, core, edema, or benign. In this research, a novel approach using Salp Water Optimization-based Deep Belief network (SWO-based DBN) is introduced to classify brain tumor. At the initial stage, the input image is pre-processed to eradicate the artifacts present in input image. Following pre-processing, the segmentation is executed by SegNet, where the SegNet is trained using the proposed SWO. Moreover, the Convolutional Neural Network (CNN) features are employed to mine the features for future processing. At last, the introduced SWO-based DBN technique efficiently categorizes the brain tumor with respect to the extracted features. Thereafter, the produced output of the introduced SegNet + SWO-based DBN is made use of in brain tumor segmentation and classification. The developed technique produced better results with highest values of accuracy at 0.933, specificity at 0.880, and sensitivity at 0.938 using BRATS, 2018 datasets and accuracy at 0.921, specificity at 0.853, and sensitivity at 0.928 for BRATS, 2020 dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号