首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 46 毫秒
1.
邢松  周蜜  潘雷 《人类学学报》2020,39(4):521-531
东亚中更新世古人类在头骨、下颌骨、牙齿等解剖部位表现出不同程度的形态多样性,中期成员代表为直立人,而晚期成员的演化地位具有较大争议。为进一步了解东亚中更新世古人类内部的形态变异特点和为东亚中更新世晚期古人类分类提供依据,本文使用微分同胚的表面匹配(Diffeomorphic Surface Matching, DSM)和形态测量图(Morphometric map)对下颌第二臼齿(M2)釉质-齿质连接面的形状和齿冠侧面釉质厚度分布模式进行了量化分析。结果显示:1)东亚中更新世古人类与晚期人属成员(尼安德特人和现代人)存在较明显的形态差别;2)该时段晚期的东亚古人类相对中期直立人在侧面釉质厚度分布规律上具有独特性,并在釉质-齿质连接面的三维形状上与晚期人属成员更加接近。本文在以往对东亚中更新世古人类牙齿内外结构单个性状研究的基础上,使用三维形态测量方法进一步量化了M2釉质-齿质连接面三维形状和侧面釉质厚度分布模式两项重要特征的变异特点,这对未来该时段同类型牙齿的形态鉴定以及解决东亚中更新世晚期古人类的分类地位具有一定意义。  相似文献   

2.
周蜜  崔娅铭  邢松 《人类学学报》2016,35(4):585-597
牙齿的釉质-齿质连接面(EDJ或Enamel-dentine junction)是釉质表面(OES或Outer enamel surface)形态的发生基础,其形态特征在牙齿发育早期形成,与遗传因素密切相关。为探讨EDJ形状在近代人群中的变异特点,本文使用显微断层扫描技术(micro-CT或micro-computed tomography)扫描了100例采自华中地区近代农业人群的上颌前臼齿(P~3和P~4各50例),并复原了EDJ表面三维结构。采用基于30个标志点(landmark)和半标志点(semi-landmark)的三维几何形态测量量化了上颌前臼齿EDJ表面形状。结果显示,牙齿内部舌侧尖区域变异程度较颊侧尖大。在人群内部,上颌前臼齿的变异方式主要表现在1)颊舌尖相互靠近或远离造成的咬合面深浅的差别;2)颊舌尖齿质最高点(dentine horn)相对高度的差异;3)舌侧尖近远中方向尺寸的变化;4)P~3颊侧尖近中脊的内收与外扩造成的整个轮廓形状的对称性变化;5)P~4整个咬合面轮廓MD/BL比值的大小差别。基于以上发现,本文进一步探讨了上颌前臼齿EDJ形状在两性或不同时代标本之间是否存在差异。平均形状的比较发现男性上颌前臼齿的舌尖相对较宽,颊侧尖近中脊相对较低。但主成分分析(Principal component analysis)和置换检验(Permutation test)显示两性差异未达到显著水平。同样,从新石器时代以来的各样本组之间在EDJ形状上的差别也没有达到统计上的显著水平。这一结果提示中国近代人群上颌前臼齿EDJ表面形状的变异特点至少可以追溯到全新世早期(本文使用标本最早来自距今6000-7000年前的新石器时代阶段)。未来EDJ的三维几何形态测量可通过扩大标本数量进一步探讨不同性别、不同地区人群、不同演化阶段之间的差异。  相似文献   

3.
Fieldwork in the Yuanmou Basin of southern China has uncovered a large assemblage of late Miocene hominoid fossils assigned to Lufengpithecus hudienensis. Two mandibular first molars from this species were made available for histological analysis as part of a larger ongoing study on the ontogeny of dental development in Miocene to Recent hominoids. Results are compared with published and unpublished data on tooth growth in a wide range of extant and extinct hominoids. The Yuanmou molars are smaller than those of Lufengpithecus lufengensis and have markedly shorter crown formation times, overlapping slightly with Pan, but most similar to Proconsul and Dryopithecus. In other aspects of molar development (including enamel extension rates and enamel thickness), L. hudienensis shows similarities with all extant hominoids, in particular, Pongo. Ultimately, charting the ontogeny of molar crown formation may help shed light on the relationship of Lufengpithecus hudienensis to orangutans, and other Miocene to Recent hominoids.  相似文献   

4.
A geometric morphometric analysis of hominin upper first molar shape   总被引:1,自引:1,他引:0  
Recent studies have revealed interesting differences in upper first molar morphology across the hominin fossil record, particularly significant between H. sapiens and H. neanderthalensis. Usually these analyses have been performed by means of classic morphometric methods, including the measurement of relative cusp areas or the angles defined between cusps. Although these studies have provided valuable information for the morphological characterization of some hominin species, we believe that the analysis of this particular tooth could be more conclusive for taxonomic assignment. In this study, we have applied geometric morphometric methods to explore the morphological variability of the upper first molar (M(1)) across the human fossil record. Our emphasis focuses on the study of the phenetic relationships among the European middle Pleistocene populations (designated as H. heidelbergensis) with H. neanderthalensis and H. sapiens, but the inclusion of Australopithecus and early Homo specimens has helped us to assess the polarity of the observed traits. H. neanderthalensis presents a unique morphology characterized by a relatively distal displacement of the lingual cusps and protrusion in the external outline of a large and bulging hypocone. This morphology can be found in a less pronounced degree in the European early and middle Pleistocene populations, and reaches its maximum expression with the H. neanderthalensis lineage. In contrast, modern humans retain the primitive morphology with a square occlusal polygon associated with a round external outline.  相似文献   

5.
The shape of the enamel-dentine junction (EDJ) in primate molars is regarded as a potential indicator of phylogenetic relatedness because it may be morphologically more conservative than the outer enamel surface (OES), and it may preserve vestigial features (e.g., cuspules, accessory ridges, and remnants of cingula) that are not manifest at the OES. Qualitative accounts of dentine-horn morphology occasionally appear in character analyses, but little has been done to quantify EDJ shape in a broad taxonomic sample. In this study, we examine homologous planar sections of maxillary molars to investigate whether measurements describing EDJ morphology reliably group extant anthropoid taxa, and we extend this technique to a small sample of fossil catarrhine molars to assess the utility of these measurements in the classification of fossil teeth. Although certain aspects of the EDJ are variable within a taxon, a taxon-specific cross-sectional EDJ configuration predominates. A discriminant function analysis classified extant taxa successfully, suggesting that EDJ shape may a reliable indicator of phyletic affinity. When considered in conjunction with aspects of molar morphology, such as developmental features and enamel thickness, EDJ shape may be a useful tool for the taxonomic assessment of fossil molars.  相似文献   

6.
Clarifying morphological variation among African and Eurasian hominoids during the Miocene is of particular importance for inferring the evolutionary history of humans and great apes. Among Miocene hominoids, Nakalipithecus and Ouranopithecus play an important role because of their similar dates on different continents. Here, we quantify the lower fourth deciduous premolar (dp4) inner morphology of extant and extinct hominoids using a method of morphometric mapping and examine the phylogenetic relationships between these two fossil taxa. Our data indicate that early Late Miocene apes represent a primitive state in general, whereas modern great apes and humans represent derived states. While Nakalipithecus and Ouranopithecus show similarity in dp4 morphology to a certain degree, the dp4 of Nakalipithecus retains primitive features and that of Ouranopithecus exhibits derived features. Phenotypic continuity among African ape fossils from Miocene to Plio-Pleistocene would support the African origin of African apes and humans (AAH). The results also suggest that Nakalipithecus could have belonged to a lineage from which the lineage of Ouranopithecus and the common ancestor of AAH subsequently derived.  相似文献   

7.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

8.
This article is the third of a series that explores hominin dental crown morphology by means of geometric morphometrics. After the analysis of the lower second premolar and the upper first molar crown shapes, we apply the same technique to lower first premolar morphology. Our results show a clear distinction between the morphology seen in earlier hominin taxa such as Australopithecus and African early Homo, as well as Asian H. erectus, and more recent groups such as European H. heidelbergensis, H. neanderthalensis, and H. sapiens. The morphology of the earlier hominins includes an asymmetrical outline, a conspicuous talonid, and an occlusal polygon that tends to be large. The morphology of the recent hominins includes a symmetrical outline and a reduced or absent talonid. Within this later group, premolars belonging to H. heidelbergensis and H. neanderthalensis tend to possess a small and mesiolingually-displaced occlusal polygon, whereas H. sapiens specimens usually present expanded and centered occlusal polygons in an almost circular outline. The morphological differences among Paranthropus, Australopithecus, and African early Homo as studied here are small and evolutionarily less significant compared to the differences between the earlier and later homin taxa. In contrast to the lower second premolar and the upper first molar crown, the inclusion of a larger hominin sample of lower first premolars reveals a large allometric component.  相似文献   

9.
The frequency and form of the middle trigonid crest (MTC) in lower permanent molars is reported for 1,131 dental casts of Bushman (San), Bantu, Solomons, Hawaiians, Pima, Eskimo, Navajo, Chinese, and American whites. The MTC occurs most often on the first molar. We found very little intra-trait variation, so observations were scored on a present-absent basis. The MTC is most frequent in the African samples and rare in those of the other populations. Two reference plaques can be obtained to add to the existing series in the ASU dental anthropology system. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
Distinctive expressions and incidences of discrete dental traits at the outer enamel surface (OES) contribute to the diagnoses of many early hominin taxa. Examination of the enamel-dentine junction (EDJ), imaged non-destructively using micro-computed tomography, has elucidated the morphological development of dental traits and improved interpretations of their variability within and among taxa. The OES expressions of one of these dental traits, the protostylid, have been found to differ among African Plio-Pleistocene fossil hominin taxa. In this study protostylid expression is examined at the OES and at the EDJ of Paranthropus robustus (n = 23) and Australopithecus africanus (n = 28) mandibular molars, with the goals of incorporating EDJ morphology into the definition of the protostylid and assessing the relative contribution of the EDJ and enamel cap to its expression in these taxa. The results provide evidence a) of statistically significant taxon-specific patterns of protostylid morphology at the EDJ that are not evident at the OES; b) that in P. robustus, thick enamel reduces the morphological correspondence between the form of the protostylid seen at the EDJ and the OES, and c) that if EDJ images can be obtained, then the protostylid retains its taxonomic value even in worn teeth.  相似文献   

12.
Discrete dental traits are used as proxies for biological relatedness among modern human populations and for alpha taxonomy and phylogeny reconstruction within the hominin clade. We present a comparison of the expression of lower molar dental traits (cusp 6, cusp 7, trigonid crest pattern, and protostylid) at the enamel-dentine junction (EDJ) in a variety of extant and fossil hominoid taxa, in order to assess the contribution of the EDJ to the morphology of these traits at the outer enamel surface (OES). Molars (n=44) were imaged nondestructively using high-resolution microCT, and three-dimensional surface models of the EDJ and OES were created to compare trait expression at each surface. Our results indicate that these dental traits originate at the EDJ, and that the EDJ is primarily responsible for their degree of expression at the OES. Importantly, variable trait morphology at the EDJ (often not easily recognizable at the OES) indicates that different developmental processes can produce traits that appear similar at the enamel surface, suggesting caution in intra- and intertaxonomic comparisons. The results also highlight the importance of the EDJ for understanding the morphological development of discrete traits, and for establishing graded scales of variation to compare trait frequency among groups for the purpose of taxonomic and/or phylogenetic analysis. Finally, this study demonstrates that imaging the EDJ of both worn and unworn fossil hominin teeth provides a novel source of information about tooth development and variation in crown morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号