首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

2.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

3.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

4.
S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53wt) or being p(HCT-116 p53−/−), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53−/− xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75NTR, p53 and Bax.  相似文献   

5.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

6.
Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells.  相似文献   

7.
Quinoxaline derivatives are reported as antineoplastic agents against a variety of human cancer cell lines, with some compounds being submitted to clinical trials. In this work, we report the synthesis, characterization and cytotoxicity potential of a new series of quinoxalinyl-hydrazones. The most cytotoxic compound was (E)-2-[2-(2-pyridin-2-ylmethylene)hydrazinyl]quinoxaline (PJOV56) that presented a time-dependent effect against HCT-116 cells. After 48 h of incubation, PJOV56 was able to induce autophagy and apoptosis of HCT-116 cells, mediated by upregulation of Beclin 1, upregulation of LC3A/B II and activation of caspase 7. Apoptosis was induced along with G0/G1 cell cycle arrest at the highest concentration of PJOV56 (6.0 µM). Thus, PJOV56 showed a dose-dependent mode of action related to induction of autophagy and apoptosis in HCT-116 cells.  相似文献   

8.
9.
We investigated the mechanisms of inhibitory effect of growth hormone-releasing hormone (GHRH) antagonist JMR-132 on the growth of HT29, HCT-116 and HCT-15 human colon cancer cells in vitro and in vivo. High-affinity binding sites for GHRH and mRNA for GHRH and splice variant-1 (SV1) of the GHRH receptor were found in all three cell lines tested. Proliferation of HT-29, HCT-116 and HCT-15 cells was significantly inhibited in vitro by JMR-132. Time course studies revealed that the treatment of human HCT-116 colon cancer cells with 10μM GHRH antagonist JMR-132 causes a significant DNA damage as shown by an increase in olive tail moment (OTM) and loss of inner mitochondrial membrane potential (?Ψm). Western blotting demonstrated a time-dependent increase in protein levels of phospho-p53 (Ser46), Bax, cleaved caspase-9, -3, cleavage of poly(ADP-ribose)polymerase (PARP) and a decrease in Bcl-2 levels. An augmentation in cell cycle checkpoint protein p21Waf1/Cip1 was accompanied by a cell cycle arrest in S-phase. DNA fragmentation visualized by the comet assay and the number of apoptotic cells increased time dependently as determined by flow cytometric annexinV and PI staining assays. In vivo, JMR-132 decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic mice up to 75% (p  相似文献   

10.
A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC50 values ranging from 2.3 to 10.2?µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells.  相似文献   

11.
The use of natural compounds to potentiate the effect of drugs and lower their adverse effects is an active area of research. The objective is to determine the effect of combined blueberry extracts (BE) and oxaliplatin (OX) in colon cancer cells. The results demonstrated that treatments of BE/OX showed inhibitory effects on HCT-116 cell and nontoxic effect on CCD-18Co normal colon cells. Flow cytometry analysis indicated that treatment with the BE, OX or in combination could induce G0/G1 cell cycle arrest, apoptosis, increase of reactive oxygen species, and induce loss of mitochondrial membrane potential in HCT-116 cells. Furthermore, after treatments, the expression of inflammatory cytokines was decreased, cyclin D1 and CDK4 were decreased; caspases-3 and 9 were activated; the Akt/Bad/Bcl-2 pathway was modulated. Moreover, the combination treatment had a considerably higher growth inhibitory effect on human colon cancer HCT-116 cells than that of BE or oxaliplatin alone. Our results showed that BE increased the anticolon cancer effect of OX making it an attractive strategy as adjuvant therapy to potentially reduce the adverse side effects associated with chemotherapeutic drugs.  相似文献   

12.
Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU) treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53) and HCT116 (null-p53) colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt) treatment. Decreased Orc6 expression in HCT-116 (wt-p53) cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53) cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53) cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53) cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45β and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.  相似文献   

13.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.  相似文献   

14.
Chen Y  Miao ZH  Zhao WM  Ding J 《FEBS letters》2005,579(17):3683-3690
The phytochemical 11,11'-dideoxyverticillin, derived from the fungus Shiraia bambusicola, has been shown to possess potent anticancer activity in vitro and in vivo. Here, we investigated the effect of 11,11'-dideoxyverticillin on cell cycle progression, and explored the potential mechanisms for this effect. A concentration- and time-dependent cell cycle blockade at G2/M phase was observed in human colon cancer cells (HCT-116) following 11,11'-dideoxyverticillin treatment and was associated with marked increases in levels of p53, phospho-p53(ser20) and phospho-Chk2(Thr 68). When wild type p53 expression was specifically inhibited by RNA interference, HCT-116 cells treated with 11,11'-dideoxyverticillin failed to arrest in G2/M and did not show increased phospho-Chk2(Thr 68). On the other hand, 11,11'-dideoxyverticillin treatment also elicited p38 MAP kinase activity and expression of phospho-p38 MAPK. Treatment with a specific p38 MAPK inhibitor (SB203580) successfully inhibited p38 MAPK and delayed the onset of G2/M arrest induced by 0.5 microM 11,11'-dideoxyverticillin after approximately 6 h, but did not abolish the induction of G2/M arrest. Additionally, SB203580 did not alter the levels of p53, phospho-p53 (ser20), or phospho-Chk2 (Thr68) proteins in 11,11'-dideoxyverticillin-treated cells. Together, these findings indicate that p53-mediated phosphorylation of Chk2 maybe plays a vital role in 11,11'-dideoxyverticillin-induced G2/M arrest, and that p38 MAPK might accelerate this progression. Our work suggests a new possibility of interactions among p53, Chk2 and p38 MAPK signaling in G2/M arrest.  相似文献   

15.
The short-chain and n-3 polyunsaturated fatty acids exhibit anticancer properties, and they may mutually interact within the colon. However, the molecular mechanisms of their action in colon cancer cells are still not fully understood. Our study focused on the mechanisms responsible for the diverse effects of sodium butyrate (NaBt), in particular when interacting with docosahexaenoic acid (DHA), in distinct colon cancer cell types, in which NaBt either induces cell differentiation or activates programmed cell death involving mitochondrial pathway. NaBt activated autophagy both in HT-29 cells, which are sensitive to induction of differentiation, and in nondifferentiating HCT-116 cells. However, autophagy supported cell survival only in HT-29 cells. Combination of NaBt with DHA-promoted cell death, especially in HCT-116 cells and after longer time intervals. The inhibition of autophagy both attenuated differentiation and enhanced apoptosis in HT-29 cells treated with NaBt and DHA, but it had no effect in HCT-116 cells. NaBt, especially in combination with DHA, activated PPARγ in both cell types. PPARγ silencing decreased differentiation and increased apoptosis only in HT-29 cells, therefore we verified the role of caspases in apoptosis, differentiation and also PPARγ activity using a pan-caspase inhibitor. In summary, our data suggest that diverse responses of colon cancer cells to fatty acids may rely on their sensitivity to differentiation, which may in turn depend on distinct engagement of autophagy, caspases and PPARγ. These results contribute to understanding of mechanisms underlying differential effects of NaBt, when interacting with other dietary fatty acids, in colon cancer cells.  相似文献   

16.
为建立一种快速高效的falcarindiol(FAD)制备程序并探讨其抑制结肠癌细胞HCT-116增殖作用与调控细胞周期阻滞相关基因之间的关系。研究使用硅胶柱色谱富集及制备HPLC分离纯化得到了FAD单体,依据波谱数据鉴定其结构;采用MTS法检测FAD对结肠癌细胞HCT-116的细胞毒活性,运用流式细胞术、RT-qPCR以及Westernblotting法分别检测FAD对结肠癌细胞HCT-116周期影响、周期阻滞基因β-catenin、cyclinD1和c-myc的mRNA水平及蛋白表达的作用。结果显示建立制备HPLC方法可以较快速稳定地得到较高纯度的FAD。FAD对结肠癌细胞HCT-116具有明显的细胞毒活性,与HCT-116细胞作用24、48、72h的IC50值分别为8.1±1.4、4.6±0.5、3.2±0.4μmoL/L。此外,FAD将HCT-116细胞周期阻滞在G2/M期,且能够显著下调Wnt/β-catenin通路中的β-catenin、cyclinD1和c-myc基因的转录及表达。据此推断FAD可能是通过调节Wnt/β-catenin信号通路阻滞HCT-116细胞生长周期进而抑制其细胞的增殖来产生抗结直肠癌的作用。  相似文献   

17.
Our previous studies indicated that dietary conjugated linoleic acid (CLA) inhibits colon tumor cell proliferation in vitro and in vivo. To identify mechanisms by which CLA regulates growth arrest, the HT-29 human colon carcinoma cell line was treated with various physiological concentrations of CLA and analyzed by flow cytometry. We detected a dose-dependent increase in the percentage of cells arrested in G1 after CLA treatment that was accompanied by induction of the cyclin dependent kinase (CDK) inhibitor p21CIP1/WAF. CLA addition also led to increased p21 expression in HCT116 and SW480 cells, indicating that p21 induction is a general consequence of CLA treatment in colon cancer cells. Since both HT-29 and SW480 cells have mutant p53, our data indicate that p53 is not essential for induction of p21. In addition to an increase in p21 levels, HT-29 cell growth arrest was also accompanied by moderate decreases in Cyclin A, D1, E, and proliferating cell nuclear antigen (PCNA) levels. Following CLA treatment, p21 associated with and inhibited CDK4 and CDK2, and this correlated with reduced phosphorylation of retinoblastoma proteins. Increased association of p21 with PCNA was also detected. Dietary CLA inhibits cell cycle progression by inducing p21, which negatively regulates the growth promoting activities of CDK/cyclins and PCNA. These studies indicate that physiological concentrations of CLA inhibit growth of colon cancer cells with either wild-type or mutant p53, and may have therapeutic benefits in vivo.  相似文献   

18.
This study aims to investigate the mechanisms associated with the antiproliferation effect of guanosine on human colon carcinoma HCT 116 cells. In this study, guanosine induced more drastic cell cycle arrest effect than cell death effect on HCT 116 cells. The cell cycle arrest effect of guanosine on HCT 116 cells appeared to be associated with the increased activation of mitogen-activated protein kinases (MAPK) such as ERK1/2, p38 and JNK. The decrease of AMP-activated protein kinase (AMPK) activation and cyclin D1 expression was also involved. Thus, the antiproliferation of colon cancer cells of guanosine could be mediated by the disruption of MAPK and AMPK pathways.  相似文献   

19.
p53 is an important player in the cellular response to genotoxic stress whose functions are regulated by phosphorylation of a number of serine and threonine residues. Phosphorylation of p53 influences its DNA-binding and gene regulation activities. This study examines p53 phosphorylation in HCT-116 (MMR-deficient) and HCT-116+ch3 (MMR-proficient) human colon cancer cells treated with a S(N)2 DNA-alkylating agent, methylmethane sulfonate (MMS). MMS induces phosphorylation of p53 on Ser15 and Ser392 in a dose- and time-dependent manner. MMS-induced p53 phosphorylation is independent of DNA mismatch repair (MMR) activity. Nuclear extracts from MMS-treated HCT-116 cells had higher p21WAF1/Cip1 (p21) promoter DNA-binding activity in vitro opposed to untreated cells. After MMS treatment, the activation of the cloned p21 promoter in a transient transfection assay and endogenous p21 mRNA levels in HCT-116(p53+/+) versus HCT-116(p53-/-) cells increased, which correlates with an increased levels of phospho-p53(Ser15) and phospho-p53(Ser392). These results suggest that SN2 DNA-alkylating agent-induced phosphorylation of p53 on Ser15 and Ser392 increases its DNA-binding properties to cause an increased expression of p21 that may play a role in cell cycle arrest and/or apoptosis of HCT-116 cells.  相似文献   

20.
Human GLTP on chromosome 12 (locus 12q24.11) encodes a 24 kD amphitropic lipid transfer protein (GLTP) that mediates glycosphingolipid (GSL) intermembrane trafficking and regulates GSL homeostatic levels within cells. Herein, we provide evidence that GLTP overexpression inhibits the growth of human colon carcinoma cells (HT-29; HCT-116), but spares normal colonic cells (CCD-18Co). Mechanistic studies reveal that GLTP overexpression arrested the cell cycle at the G1/S checkpoint via upregulation of cyclin-dependent kinase inhibitor-1B (Kip1/p27) and cyclin-dependent kinase inhibitor 1A (Cip1/p21) at the protein and mRNA levels, and downregulation of cyclin-dependent kinase-2 (CDK2), cyclin-dependent kinase-4 (CDK4), cyclin E and cyclin D1 protein levels. Assessment of the biological fate of HCT-116 cells overexpressing GLTP indicated no increase in cell death suggesting induction of quiescence. However, HT-29 cells overexpressing GLTP underwent cell death by necroptosis as revealed by phosphorylation of human mixed lineage kinase domain-like protein (pMLKL) via receptor-interacting protein kinase-3 (RIPK-3), elevated cytosolic calcium, and plasma membrane permeabilization by pMLKL oligomerization. Overexpression of W96A-GLTP, an ablated GSL binding site mutant, failed to arrest the cell cycle or induce necroptosis. Sphingolipid assessment (ceramide, monohexosylceramide, sphingomyelin, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate) of HT-29 cells overexpressing GLTP revealed large decreases (>5-fold) in sphingosine-1-phosphate with minimal change in 16:0-ceramide, tipping the ‘sphingolipid rheostat’ (S1P/16:0-Cer ratio) towards cell death. Depletion of RIPK-3 or MLKL abrogated necroptosis induced by GLTP overexpression. Our findings establish GLTP upregulation as a previously unknown suppressor of human colon carcinoma HT-29 cells via interference with cell cycle progression and induction of necroptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号