首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A Yee  B Szymczyna  J D O'Neil 《Biochemistry》1999,38(20):6489-6498
Alamethicin is a 20 amino acid antibiotic peptide produced by the soil fungus Trichoderma viride. The peptide inserts into bacterial membranes and self-associates to form ion channels, but the details of this process are unknown. Residue-specific acid- and base-catalyzed exchange data were obtained for 16 of 18 backbone amides of alamethicin dissolved in sodium dodecyl sulfate micelles using high-resolution 2-dimensional heteronuclear nuclear magnetic resonance spectroscopy. To facilitate interpretation of the exchange data, we synthesized N-acetyl-alpha-aminoisobutyric acid-N'-methyl and N-acetyl-alanine-N'-methyl and measured the pD dependence of their hydrogen-deuterium exchange rates to determine the sequence-dependent inductive and steric effects of the alpha-aminoisobutyric acid residue. Intramolecular H-bonding in alamethicin was monitored through the exchange parameters kmin (minimum exchange rate) which indicate that the backbone is significantly more stable than the backbones of alanine-based helical peptides. Rapid exchange at Gly-11 suggests a highly local conformational flexibility in the middle of the peptide. Interactions with the detergent micelle were revealed by the exchange parameters pDmin (pD of minimum exchange) which suggest that the N-terminus of alamethicin interacts more strongly with the detergent micelle than does the C-terminus. A periodicity in pDmin difference data reveals that one surface of the helix interacts more strongly with the micelle. The surface consists of residues 1, 5, 9, 13, 16, and 20. The opposite face of the helix contains several polar residues (two glutamines and a glycine), suggesting that, on average, this face of the helix is directed toward the solvent. These results serve as a model for the interaction of the peptide with membranes containing anionic lipid. In combination with published molecular dynamics simulations [Gibbs et al. (1997) Biophys. J. 72, 2490-2495], the present results also offer insight into the mechanisms of hydrogen-deuterium exchange in helical peptides.  相似文献   

2.
Alamethicin is a 19-amino-acid residue hydrophobic peptide that produces voltage-dependent ion channels in membranes. Analogues of the Glu(OMe)(7,18,19) variant of alamethicin F50/5 that are rigidly spin-labeled in the peptide backbone have been synthesized by replacing residue 1, 8, or 16 with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxyl (TOAC), a helicogenic nitroxyl amino acid. Conventional electron paramagnetic resonance spectra are used to determine the insertion and orientation of the TOAC(n) alamethicins in fluid lipid bilayer membranes of dimyristoyl phosphatidylcholine. Isotropic (14)N-hyperfine couplings indicate that TOAC(8) and TOAC(16) are situated in the hydrophobic core of the membrane, whereas the TOAC(1) label resides closer to the membrane surface. Anisotropic hyperfine splittings show that alamethicin is highly ordered in the fluid membranes. Experiments with aligned membranes demonstrate that the principal diffusion axis lies close to the membrane normal, corresponding to a transmembrane orientation. Combination of data from the three spin-labeled positions yields both the dynamic order parameter of the peptide backbone and the intramolecular orientations of the TOAC groups. The latter are compared with x-ray diffraction results from alamethicin crystals. Saturation transfer electron paramagnetic resonance, which is sensitive to microsecond rotational motion, reveals that overall rotation of alamethicin is fast in fluid membranes, with effective correlation times <30 ns. Thus, alamethicin does not form large stable aggregates in fluid membranes, and ionic conductance must arise from transient or voltage-induced associations.  相似文献   

3.
The ion currents induced by alamethicin were investigated in unilamellar vesicles using electron paramagnetic resonance probe techniques. The peptide induced currents were examined as a function of the membrane bound peptide concentration, and as a function of the transmembrane electrical potential. Because of the favorable partitioning of alamethicin to membranes and the large membrane area to aqueous volume in vesicle suspensions, these measurements could be carried out under conditions where all the alamethicin was membrane bound. Over the concentration range examined, the peptide induced conductances increased approximately with the fourth power of the membrane bound peptide concentration, indicating a channel molecularity of four. When the alamethicin induced currents were examined as a function of voltage, they exhibited a superlinear behavior similar to that seen in planar bilayers. Evidence for the voltage-dependent conduction of alamethicin was also observed in the time dependence of vesicle depolarization. These observations indicate that the voltage-dependent behavior of alamethicin can occur in the absence of a voltage-dependent phase partitioning. That is, a voltage-dependent conformational rearrangement for membrane bound alamethicin leads to a voltage-dependent activity.  相似文献   

4.
Alamethicin incorporation in lipid bilayers: a thermodynamic study   总被引:8,自引:0,他引:8  
V Rizzo  S Stankowski  G Schwarz 《Biochemistry》1987,26(10):2751-2759
Interaction of the peptide antibiotic alamethicin with phospholipid vesicles has been monitored by changes in its circular dichroic and fluorescent properties. The data are consistent with an incorporation of the peptide in the lipid bilayer. Aggregation of alamethicin in the membrane phase is evident from a characteristic concentration dependence of the incorporation, reflecting the existence of a critical concentration. The data can be fully understood in terms of a theoretical approach that includes aggregation and thermodynamic nonideality. Thermodynamic parameters of the peptide-lipid interaction have been evaluated under a variety of conditions of temperature, ionic strength, and lipid type (saturated and unsaturated fatty acid chains). From the results obtained in this study, one can extrapolate to the incorporation behavior of alamethicin at low concentrations, as they are typical for measurements of conductance across planar lipid films. This leads to a simple explanation of the voltage-gating mechanism of alamethicin in a straightforward way.  相似文献   

5.
Two approaches employing nuclear magnetic resonance (NMR) were used to investigate the transmembrane migration rate of the C-terminal end of native alamethicin and a more hydrophobic analog called L1. Native alamethicin exhibits a very slow transmembrane migration rate when bound to phosphatidylcholine vesicles, which is no greater than 1 x 10(-4) min(-1). This rate is much slower than expected, based on the hydrophobic partition energies of the amino acid side chains and the backbone of the exposed C-terminal end of alamethicin. The alamethicin analog L1 exhibits crossing rates that are at least 1000 times faster than that of native alamethicin. A comparison of the equilibrium positions of these two peptides shows that L1 sits approximately 3-4 A deeper in the membrane than does native alamethicin (Barranger-Mathys and Cafiso. 1996. Biochemistry. 35:489). The slow rate of alamethicin crossing can be explained if the peptide helix is irregular at its C-terminus and hydrogen bonded to solvent or lipid. We postulate that L1 does not experience as large a barrier to transport because its C-terminus is already buried within the membrane interface. This difference is most easily explained by conformational differences between L1 and alamethicin rather than differences in hydrophobicity. The results obtained here demonstrate that side-chain hydrophobicity alone cannot account for the energy barriers to peptide and protein transport across membranes.  相似文献   

6.
Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is either the bulk solution or water within parallel or antiparallel transmembrane arrays of reconstituted alamethicin.  相似文献   

7.
We investigate the bending elasticity of lipid membranes with the increase of the alamethicin concentrations in the membrane via analysis of the thermally induced shape fluctuations of quasi-spherical giant vesicles. Our experimental results prove the strong influence of alamethicin molecules on the bending elasticity of diphytanoyl phosphatidylcholine and dilauroyl phosphatidylcholine membranes even in the range of very low peptide concentrations (less than 10−3 mol/mol in the membrane). The results presented in this work, testify to the peripheral orientation of alamethicin molecules at low peptide concentrations in the membrane for both types of lipid bilayers. An upper limit of the concentration of the peptide in the membrane is determined below which the system behaves as an ideal two-dimensional solution and the peptide molecules have a planar orientation in the membrane.  相似文献   

8.
Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC1 to TOAC8 and TOAC16 but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC16 is located in the bilayer leaflet opposite to that of TOAC1 and TOAC8. Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC8, indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states.  相似文献   

9.
The structural organization of ion channels formed in lipid membranes by amphiphilic alpha-helical peptides is deduced by applying direct structural methods to different lipid/alamethicin systems. Alamethicin represents a hydrophobic alpha-helical peptide antibiotic forming voltage-gated ion channels in lipid membranes. Here the first direct evidence for the existence of large-scale two-dimensional crystalline domains of alamethicin helices, oriented parallel to the air/water interface, is presented using synchrotron x-ray diffraction, fluorescence microscopy, and surface pressure/area isotherms. Proofs are obtained that the antibiotic peptide injected into the aqueous phase under phospholipid monolayers penetrates these monolayers, phase separates, and forms domains within the lipid environment, keeping the same, parallel orientation of the alpha-helices with respect to the phospholipid/water interface. A new asymmetrical, "lipid-covered ring" model of the voltage-gated ion channel of alamethicin is inferred from the structural results presented, and the mechanism of ion-channel formation is discussed.  相似文献   

10.
H Duclohier  G Molle    G Spach 《Biophysical journal》1989,56(5):1017-1021
The ionophore properties of magainin I, an antimicrobial and amphipathic peptide from the skin of Xenopus, were investigated in planar lipid bilayers. Circular dichroism studies, performed comparatively with alamethicin, in small or large unilamellar phospholipidic vesicles, point to a smaller proportion of alpha-helical conformation in membranes. A weakly voltage-dependent macroscopic conductance which is anion-selective is developed when using large aqueous peptide concentration with lipid bilayer under high voltages. Single-channel experiments revealed two main conductance levels occurring independently in separate trials. Pre-aggregates lying on the membrane surface at rest and drawn into the bilayer upon voltage application are assumed to account for this behaviour contrasting with the classical multistates displayed by alamethicin.  相似文献   

11.
Membrane incorporation and aggregation of the peptide alamethicin have been investigated as a function of lipid type. Head group and acyl chain regions both contribute to modulate alamethicin incorporation. Specifically, the peptide prefers thin membranes and saturated chains; incorporation is reduced by the presence of cholesterol. Aggregation of the peptide in the bilayer is virtually insensitive to changes in lipid composition. These findings show some analogies to results obtained with intrinsic membrane proteins and cast doubt on the use of global membrane parameters for interpreting lipid-peptide interactions.  相似文献   

12.
Voltage-dependent lipid flip-flop induced by alamethicin.   总被引:5,自引:1,他引:4       下载免费PDF全文
Alamethicin appears to allow voltage-dependent lipid exchange ("flip-flop") between leaflets of a planar bilayer. In membranes with one leaflet of phosphatidyl serine and one of phosphatidyl ethanolamine, the shape of the nonactin current-voltage curve accurately reports the difference in surface potential between the two sides of the membrane. The surface potential is itself a good measure of membrane asymmetry. Alamethicin added to the bathing solutions of an asymmetric membrane does not per se reduce the membrane asymmetry, but turning on the alamethicin conductance by application of a voltage pulse does. Immediately after application of a voltage pulse, large enough to turn on the alamethicin conductance, the asymmetry of the nonactin-K+ current voltage curve decreases, in some cases, nearly to zero. During the pulse, the alamethicin conductance activates if a decrease in surface potential favors turn-on of the alamethicin conductance or inactivates if a decrease in surface potential favors turn-off of the alamethicin conductance. After the pulse, the nonactin-K+ asymmetry returns to its original value if the alamethicin conductance is not turned on. The time-course of this return allows an estimate of the diffusion constant of lipid in the planar bilayer. The value obtained is 5.1 x 10(-8) cm2/s.  相似文献   

13.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

14.
Alamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids. The employment of bicelles affords additional spectral resolution, thanks to the formation of a macroscopically oriented phase that allows to gain information on alamethicin orientation and dynamics. Moreover, the high viscosity of the bicellar solution permits the investigation of the peptide aggregation properties at physiological temperature. We observed that, at 35 °C, alamethicin adopts a transmembrane orientation with the peptide axis forming an average angle of 25° with respect to the bilayer normal. Moreover, alamethicin maintains its dynamics and helical tilt constant at all concentrations studied. On the other hand, by increasing the peptide concentration, the bilayer experiences an exponential decrease of the order parameter, but does not undergo micellization, even at the highest peptide to lipid ratio studied (1:20). Finally, the aggregation of the peptide at physiological temperature shows that the peptide is monomeric at peptide to lipid ratios lower than 1:50, then it aggregates with a rather broad distribution in the number of peptides (from 6 to 8) per oligomer.  相似文献   

15.
The peptide alamethicin self-assembles to form helix bundle ion channels in membranes. Previous macroscopic measurements have shown that these channels are mildly cation-selective. Models indicate that a source of cation selectivity is a zone of partial negative charge toward the C-terminal end of the peptide. We synthesized an alamethicin derivative with a lysine in this zone (replacing the glutamine at position 18 in the sequence). Microscopic (single-channel) measurements demonstrate that dimeric alamethicin-lysine18 (alm-K18) forms mildly anion-selective channels under conditions where channels formed by the parent peptide are cation-selective. Long-range electrostatic interactions can explain the inversion of ion selectivity and the conductance properties of alamethicin channels.  相似文献   

16.
Alamethicin at a concentration of 2 micrograms/ml on one side of a lipid bilayer, formed at the tip of a patch clamp pipette from diphytanoyl phosphatidylcholine and cholesterol (2:1 mol ratio) in aqueous 0.5 M KCl, 5 mM Hepes, pH 7.0, exhibits an asymmetric current-voltage curve, only yielding alamethicin currents when the side to which the peptide has been added is made positive. Below room temperature, however, single alamethicin channels created in such membranes sometimes survive a sudden reversal of the polarity. These "reversed" channels are distinct from transiently observed states displayed as the channel closes after a polarity reversal. Such "reversed" channels can be monitored for periods up to several minutes, during which time we have observed them to fluctuate through more than 20 discrete conductance states. They are convenient for the study of isolated ion-conducting alamethicin aggregates because, after voltage reversal, no subsequent incorporation of additional ion-conducting aggregates takes place.  相似文献   

17.
Alamethicin is a hydrophobic antibiotic peptide 20 amino acids in length. It is predominantly helical and partitions into lipid bilayers mostly in transmembrane orientations. The rate of the peptide transverse diffusion (flip-flop) in palmitoyl-oleyl-phosphatidylcholine vesicles has been measured recently and the results suggest that it involves an energy barrier, presumably due to the free energy of transfer of the peptide termini across the bilayer. We used continuum-solvent model calculations, the known x-ray crystal structure of alamethicin and a simplified representation of the lipid bilayer as a slab of low dielectric constant to calculate the flip-flop rate. We assumed that the lipids adjust rapidly to each configuration of alamethicin in the bilayer because their motions are significantly faster than the average peptide flip-flop time. Thus, we considered the process as a sequence of discrete peptide-membrane configurations, representing critical steps in the diffusion, and estimated the transmembrane flip-flop rate from the calculated free energy of the system in each configuration. Our calculations indicate that the simplest possible pathway, i.e., the rotation of the helix around the bilayer midplane, involving the simultaneous burial of the two termini in the membrane, is energetically unfavorable. The most plausible alternative is a two-step process, comprised of a rotation of alamethicin around its C-terminus residue from the initial transmembrane orientation to a surface orientation, followed by a rotation around the N-terminus residue from the surface to the final reversed transmembrane orientation. This process involves the burial of one terminus at a time and is much more likely than the rotation of the helix around the bilayer midplane. Our calculations give flip-flop rates of approximately 10(-7)/s for this pathway, in accord with the measured value of 1.7 x 10(-6)/s.  相似文献   

18.
Alamethicin and related α-aminoisobutyric acid peptides form transmembrane channels across lipid bilayers. This article briefly reviews studies on the effect of alamethicin on lipid phase transitions in lipid bilayers and on mitochondrial oxidative phosphorylation. Fluorescence polarization studies, employing 1,6-diphenyl-1,3,5-hexatriene as a probe, suggest that alamethicin fluidizes lipid bilayers below the phase transition t-emperature, but has little effect above the gel-liquid crystal transition point. Alamethicin is shown to function as an uncoupler of oxidative phosphorylation in rat liver mitochondria. The influence of alamethicin on mitochondrial respiration is modulated by the phosphate ion concentration in the medium. Classical uncoupling activity is evident at low phosphate levels while inhibitory effects set in at higher phosphate concentrations. Time-dependent changes in respiration rates following peptide addition are rationalized in terms of alamethicin interactions with mitochondrial membrane components.  相似文献   

19.
Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.  相似文献   

20.
L P Kelsh  J F Ellena  D S Cafiso 《Biochemistry》1992,31(22):5136-5144
Alamethicin is a channel-forming peptide antibiotic that produces a highly voltage-dependent conductance in planar bilayers. To provide insight into the mechanisms for its voltage dependence, the dynamics of the peptide were examined in solution using nuclear magnetic resonance. Natural-abundance 13C spin-lattice relaxation rates and 13C-1H nuclear Overhauser effects of alamethicin were measured at two magnetic field strengths in methanol. This information was interpreted using a model-free approach to obtain values for the overall correlation times as well as the rates and amplitudes of the internal motions of the peptide. The picosecond, internal motions of alamethicin are highly restricted along the peptide backbone and indicate that it behaves as a rigid helical rod in solution. The side chain carbons exhibit increased segmental motion as their distance from the peptide backbone is increased; however, these motions are not unrestricted. Methyl group dynamics are also consistent with the restricted motions observed for the backbone carbons. There is no evidence from these dynamics measurements for a hinged motion of the peptide about proline-14. Alamethicin appears to be slightly less structured in methanol than in the membrane; as a result, alamethicin is also expected to behave as a rigid helix in the membrane. This suggests that the gating of this peptide involves changes in the orientation of the entire helix, rather than the movement of a segment of the peptide backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号