首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen radicals and lung edema   总被引:1,自引:0,他引:1  
  相似文献   

2.
Oxygen radicals from acetaldehyde   总被引:4,自引:0,他引:4  
  相似文献   

3.
Plant plasma membranes are known to produce superoxide radicals, while the production of the hydroxyl radical, previously detected in complex plant tissues, is thought to occur in the cell wall. The mechanism of production of superoxide radicals by plant plasma membranes is, however, under dispute. It is shown, using electron paramagnetic resonance spectroscopy with a 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin-trap capable of differentiating between radical species, that isolated purified plasma membranes from maize roots produce hydroxyl radicals besides superoxide radicals. The results argue in favour of superoxide production through an oxygen and diphenylene iodonium-sensitive, NADH-dependent superoxide synthase mechanism, as well as through other unidentified mechanism(s). The hydroxyl radical is produced by an oxygen-insensitive, NADH-stimulated mechanism, which is enhanced in membranes in which the superoxide synthase is incapacitated by substrate removal or inhibition.  相似文献   

4.
Oxygen free radicals and reperfusion-induced arrhythmias   总被引:2,自引:0,他引:2  
X Z Xu 《生理科学进展》1987,18(2):141-144
  相似文献   

5.
Oxygen free radicals and Parkinson's disease   总被引:7,自引:1,他引:7  
The involvement of oxygen radicals in the pathogenesis of Parkinson's disease has been suggested for some time. This article reviews the evidence supporting the involvement of oxygen radicals in the disease process in the brain. This includes a discussion of iron, lipid peroxidation, peroxidase, catalase, superoxide dismutase, and glutathione levels in the brain. In addition, various theories of induction of Parkinson's disease are discussed in relation to the possible involvement of oxygen radicals. These theories include the environmental toxin theory, the dopamine turnover theory, and the cerebral blood flow theory.  相似文献   

6.
Most cardiac surgical procedures require the use of prolonged induced myocardial ischemia. Experimental models of global myocardial ischemia which mimic cardiac surgical techniques have been developed to investigate the possibility of oxygen free radical development during prolonged myocardial ischemia or upon reperfusion. In such experiments, various free radical scavenging agents, including superoxide dismutase, catalase, and mannitol, have been shown to improve the tolerance of the heart to protracted global ischemia. Use of these agents has improved cardiac functional recovery and has attenuated the biochemical and structural changes which occur due to prolonged ischemia and reflow. In a recently developed porcine experimental model, the effects of preexisting regional myocardial ischemia with superimposed global ischemia and reperfusion have been studied, with free radical scavenging agents administered in an attempt to reduce myocardial infarction and improve regional functional recovery. In most such studies completed to date, free radical scavenging agents have resulted in better myocardial preservation, suggesting, at least indirectly, that there may be an oxygen free radical-mediated component of the ischemia-reperfusion injury seen in such models. Techniques for directly measuring myocardial oxygen free radical levels may allow for early clarification of the development of such toxic species in the clinical cardiac surgical setting.  相似文献   

7.
Oxygen radicals in CNS damage   总被引:4,自引:0,他引:4  
The products of univalent reduction of oxygen, superoxide anion radical, hydrogen peroxide, and the hydroxyl radical, are capable of causing cellular damage and death. They are, therefore, logical candidates as mediators of vascular and parenchymal injury in the central nervous system (CNS). This paper reviews the sources of oxygen radicals in the CNS, their effects on cerebral vessels and on brain and spinal cord parenchyma, and the evidence which implicates oxygen radicals in various pathological conditions of the CNS.  相似文献   

8.
9.
Chen P  Li X  Sun Y  Liu Z  Cao R  He Q  Wang M  Xiong J  Xie J  Wang X  Liang S 《Journal of neurochemistry》2006,98(4):1126-1140
The hippocampus is a distinct brain structure that is crucial in memory storage and retrieval. To identify comprehensively proteins of hippocampal plasma membrane (PM) and detect the neuronal-specific PM proteins, we performed a proteomic analysis of rat hippocampus PM using the following three technical strategies. First, proteins of the PM were purified by differential and density-gradient centrifugation from hippocampal tissue and separated by one-dimensional electophoresis, digested with trypsin and analyzed by electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) tandem mass spectrometry (MS/MS). Second, the tryptic peptide mixture from PMs purified from hippocampal tissue using the centrifugation method was analyzed by liquid chromatography ion-trap ESI-MS/MS. Finally, the PM proteins from primary hippocampal neurons purified by a biotin-directed affinity technique were separated by one-dimensional electrophoresis, digested with trypsin and analyzed by ESI-Q-TOF-MS/MS. A total of 345, 452 and 336 non-redundant proteins were identified by each technical procedure respectively. There was a total of 867 non-redundant protein entries, of which 64.9% are integral membrane or membrane-associated proteins. One hundred and eighty-one proteins were detected only in the primary neurons and could be regarded as neuronal PM marker candidates. We also found some hypothetical proteins with no functional annotations that were first found in the hippocampal PM. This work will pave the way for further elucidation of the mechanisms of hippocampal function.  相似文献   

10.
11.
Oxygen radicals in intestinal ischemia and reperfusion   总被引:1,自引:0,他引:1  
Intestinal ischemia, however, caused, is still a serious and growing clinical problem with an unacceptable mortality rate of over 60%. This high mortality rate is mainly due to the fact that the patients are not admitted to the hospital or not treated early enough. Even if the patients are operated on within 24 h, their mortality rate is still over 50%, and those surviving the initial treatment suffer from postischemic complications. These damages have been accounted until now to tissue ischemia. It has been proven experimentally that also reperfusion or revascularization after time-limited ischemia add to the tissue damages observed, due to the formation of O2-radicals. Thereby the prerequisites for the production of these radicals (the conversion of xanthine dehydrogenase to xanthine oxidase and the increase of hypoxanthine concentrations in the tissue and plasma) are generated during tissue ischemia. These radicals damage directly or initiate several vicious circles leading to mucosal lesions, impaired intestinal function and an enhanced absorption of bacteria and endotoxin. Various substances (SOD, catalase, DMSO, allopurinol, deferoxamine etc.) detoxify oxygen radicals or inhibit the pathomechanisms leading to the enhanced radical generation. Hopefully, the combination of early revascularization with these already available scavengers will improve the high mortality and morbidity of patients suffering from intestinal ischemia.  相似文献   

12.
We employed a carbocyanine dye (1,1',3,3,3',3'-hexamethylindocarbocyanine iodide) to measure the plasma membrane potential of LLC-PK1 renal epithelial cells exposed to either xanthine oxidase-generated oxygen radicals or to hydrogen peroxide. Measurements were performed using a fluorescent-activated cell sorter to record fluorescence on a cell by cell basis. Initial exposure of cells to low concentrations of either H2O2 or xanthine oxidase resulted in a transient increase in membrane potential relative to control cells (P less than 0.001), followed by an exponential decline in potential (P less than 0.001). The addition of extracellular catalase diminished the H2O2-related decline in potential, consistent with a role for hydrogen peroxide in producing this effect. Pretreatment of cells with inhibitors of intracellular catalase and superoxide dismutase prior to exposure to xanthine oxidase caused an even larger decline in potential (P less than 0.001). Cells could be partially protected from the radical-mediated loss of potential by incubating them in a hypertonic (400 mosmolal) environment during radical exposure. Similarly, the loss of membrane potential was increased after incubation of cells in a hypotonic (200 mosmolal) environment during radical exposure. These observations are consistent with a reduction in membrane potential effected by exposure to oxygen radicals (including superoxide anion and hydrogen peroxide). This reduction may be prevented, in part, by radical scavenging enzymes and by reducing the degree of cellular swelling in response to oxygen radical exposure.  相似文献   

13.
Oxygen free radicals in essential hypertension   总被引:6,自引:0,他引:6  
Membrane abnormalities in essential hypertensives (EH) are well known. The respiratory burst enzyme, NADPH oxidase is located in the cell membrane of the neutrophil (PMNLs) and its activity is important in generation of oxygen derived free radical (OFR). Recently OFR have been implicated in vascular changes in variety of conditions. An attempt was made to delineate the status of OFR and antioxidants in EH. Ten, age and sex-matched, healthy controls (GpI) and 26 untreated EH (Gp IIA mild-8, Gp IIB Moderate-8, Gp IIC Severe-10) were studied. After clinical examination and basic laboratory evaluation of subjects, neutrophils isolated from their blood were studied. Chemiluminescence (CL) emitted by PMNLs after stimulation was measured (counts/min) in a luminometer and was taken as measure of OFR production and thereby of NADPH oxidase activity. The levels of antioxidants, super oxide dismutase (SOD) and reduced glutathione (GSH), were also estimated. Chemiluminescence was increased significantly (p < 0.01) in Gp IIC (243.04 ± 24.9 × 103 counts per minute) as compared to Gp IIA (2.80 ± 1.87), Gp IIB (34.54 ± 30.24) and Gp I (0.52 ± 0.15) and SOD was reduced significantly (p < 0.05) in all EH (Gp IIA 3.9 ± 0.3 units per mg protein, Gp IIB 3.5 ± 0.3 and Gp IIC 3.12 ± 0.3) as compared to controls (4.1 ± 0.2). Similarly GSH was reduced (p < 0.05) in EH (Gp IIA 11.2 ± 1.7 mg per gm protein, Gp IIB 8.5 ± 1.1 and Gp IIC 6.6 ± 0.3) as compared to Gp I (13.5 ± 2.5). In essential hypertensives a curvilinear positive correlation was obtained between CL and both systolic (r = 0.7077, p < 0.01) and diastolic (r = 0.7965, p < 0.01) blood pressure. A significant inverse correlation (p < 0.05) was obtained between systolic and diastolic blood pressure on one hand and GSH and SOD on the other. Thus PMNLs of EH have increased emission of CL and depletion of antioxidants. The results indicate that in essential hypertension increased membrane NADPH oxidase activity is present.Abbreviations EH Essential Hypertensives - PMNLs Polymorphonuclear leucocytes - OFR Oxygen derived free radicals - Gp Group - NADPH Reduced Nicotinamide Adenine Dinucleotide Phosphate - CL Chemiluminescence - SOD Superoxide Dismutase - GSH Reduced Glutathione - SBP Systolic blood pressure - DBP Diastolic blood pressure  相似文献   

14.
Oxygen radicals in ulcerative colitis.   总被引:28,自引:0,他引:28  
This article reviews the pathophysiologic concept that superoxide and hydrogen peroxide, generated by activated leukocytes, together with low-molecular-weight chelate iron derived from fecal sources and from denatured hemoglobin, amplify the inflammatory response and subsequent mucosal damage in patients with active episodes of ulcerative colitis. The putative pathogenic mechanisms reviewed are as follows: (1) Dietary iron is concentrated in fecal material owing to normally limited iron absorption. (2) Mucosal bleeding, characteristic of ulcerative colitis, as well as supplemental oral iron therapy for chronic anemia, further conspire to maintain or elevate mucosal iron concentration in colitis. (3) Fenton chemistry, driven especially by leukocyte-generated superoxide and hydrogen peroxide, leads to formation of hydroxyl radicals. (4) The resultant oxidative stress leads to the extension and propagation of crypt abscesses, either through direct membrane disruption by lipid peroxidation or through generation of secondary toxic oxidants such as chloramines. (5) Chemotactic products of lipid peroxidation, including 4-hydroxynonenal, provide positive feedback to accelerate this inflammatory/oxidative process, leading to acute exacerbations of the disease. (6) Other oxidized products, such as oxidized tryptophan metabolites, created by free radical mechanisms in or near the mucosa, may act as carcinogens or tumor promotors that contribute to the exceedingly high incidence of colon carcinoma in patients suffering from chronic ulcerative colitis. In this way, self-sustaining cycles of oxidant formation may amplify flare-ups of inflammation and mucosal injury in ulcerative colitis. This concept, if proved correct by subsequent research, would provide a rationale for several novel clinical approaches to the management of ulcerative colitis, including use of SOD mimetics, iron chelators, and chain-breaking antioxidants.  相似文献   

15.
Oxygen radicals in lung pathology.   总被引:5,自引:0,他引:5  
Pulmonary tissue can be damaged in different ways, for instance by xenobiotics (paraquat, butylated hydroxytoluene, bleomycin), during inflammation, ischemia reperfusion, or exposure to mineral dust or to normobaric pure oxygen levels. Reactive oxygen species are partly responsible for the observed pulmonary tissue damage. Several mechanisms leading to toxicity are described in this review. The reactive oxygen species induce bronchoconstriction, elevate mucus secretion, and cause microvascular leakage, which leads to edema formation. Reactive oxygen species even induce an autonomic imbalance between muscarinic receptor-mediated contraction and the beta-adrenergic-mediated relaxation of the pulmonary smooth muscle. Vitamin E and selenium have a regulatory role in this balance between these two receptor responses. The autonomic imbalance might be involved in the development of bronchial hyperresponsiveness, occurring in lung inflammation. Finally, several antioxidants are discussed which may be beneficial as therapeutics in several lung diseases.  相似文献   

16.
Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.  相似文献   

17.
Oxygen radicals, inflammation, and tissue injury   总被引:8,自引:0,他引:8  
Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a key oxygen product related to the process of injury. Endothelial cells in some vascular compartments may be susceptible to neutrophil mediated injury in a manner that is independent of oxygen radicals. On the basis of in vitro observations, a synergy exits between platelets and neutrophils, resulting in enhanced oxygen radical formation by the latter. Finally, the cytokines, interleukin 1 and tumor necrosis factor, released from macrophages have both direct stimulatory effects on oxygen radical formation in neutrophils and can "prime" macrophages for enhanced oxygen radical responses to other agonists. Cytokines may also alter endothelial cells rendering them more susceptible to oxygen radical mediated injury by neutrophils. This suggests a complex network of interactions between phagocytic cells and peptide mediators, the result of which is acute, oxygen radical mediated tissue injury.  相似文献   

18.
Oxygen free radicals and redox biology of organelles   总被引:7,自引:3,他引:7  
The presence and supposed roles of reactive oxygen species (ROS) were reported in literature in a myriad of instances. However, the breadth and depth of their involvement in cellular physiology and pathology, as well as their relationship to the redox environment can only be guessed from specialized reports. Whatever their circumstances of formation or consequences, ROS seem to be conspicuous components of intracellular milieu. We sought to verify this assertion, by collecting the available evidence derived from the most recent publications in the biomedical field. Unlike other reviews with similar objectives, we centered our analysis on the subcellular compartments, namely on organelles, grouped according to their major functions. Thus, plasma membrane is a major source of ROS through NAD(P)H oxidases located on either side. Enzymes of the same class displaying low activity, as well as their components, are also present free in cytoplasm, regulating the actin cytoskeleton and cell motility. Mitochondria can be a major source of ROS, mainly in processes leading to apoptosis. The protein synthetic pathway (endoplasmic reticulum and Golgi apparatus), including the nucleus, as well as protein turnover, are all exquisitely sensitive to ROS-related redox conditions. The same applies to the degradation pathways represented by lysosomes and peroxisomes. Therefore, ROS cannot be perceived anymore as a mere harmful consequence of external factors, or byproducts of altered cellular metabolism. This may explain why the indiscriminate use of anti-oxidants did not produce the expected beneficial results in many medical applications attempted so far, underlying the need for a deeper apprehension of the biological roles of ROS, particularly in the context of the higher cellular order of organelles.  相似文献   

19.
Oxygen radicals and reactive oxygen species in reproduction   总被引:10,自引:0,他引:10  
Free radicals and reactive oxygen species play a number of significant and diverse roles in reproductive biology. In common with other biological systems, mechanisms have evolved to minimize the damaging effects that these highly reactive molecules can have on reproductive integrity. Conversely, however, recent findings illustrate the constructive roles that oxygen radicals and reactive oxygen species play in a number of important junctures in the development of germ cells and the obligate endocrine support they receive for the successful propagation of the species. Specifically addressed in this review are some aspects of sperm development and action, the uterine environment, oocyte maturation and ovulation, and corpus luteum function and regression.  相似文献   

20.
Oxygen free radicals and the systemic inflammatory response   总被引:12,自引:0,他引:12  
Closa D  Folch-Puy E 《IUBMB life》2004,56(4):185-191
The generation of oxygen free radicals is known to be involved in the development of the systemic inflammatory response syndrome. In addition to their actions as noxious mediators generated by inflammatory cells, these molecules play also a crucial role contributing to the onset and progression of inflammation in distant organs. In the early stages of the process, free radicals exert their actions via activation of nuclear factors, as NFkappaB or AP-1, that induce the synthesis of cytokines. In later stages, endothelial cells are activated due to the synergy between free radicals and cytokines, promoting the synthesis of inflammatory mediators and adhesion molecules. Finally, free radicals exert their toxic effects at the site of inflammation by reacting with different cell components, inducing loss of function and cell death. This review focuses on progress in the understanding the different actions of free radicals at the sequential stages of the development of the systemic inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号