首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.  相似文献   

2.
In this study, we present a method for transient expression of the type III effector AvrGf1 from Xanthomonas citri subsp. citri strain Aw in grapefruit leaves (Citrus paradisi) via Agrobacterium tumefaciens. The coding sequence of avrGf1 was placed under the control of the constitutive CaMV 35S promoter in the binary vectors pGWB2 and pGWB5. Infiltration of grapefruit leaves with A. tumefaciens carrying these constructs triggered a hypersensitive response (HR) in grapefruit 4 days after inoculation. When transiently expressed in grapefruit leaves, two mutants, AvrGf1ΔN116 and AvrGf1ΔC83, failed to induce an HR. Moreover, using bioinformatics tools, a chloroplast transit signal was predicted at the N terminus of AvrGf1. We demonstrated chloroplast localization by using an AvrGf1::GFP fusion protein, where confocal images revealed that GFP fluorescence was accumulating in the stomatal cells that are abundant in chloroplasts. Transient expression in citrus has the potential for aiding in the development of new disease defense strategies in citrus.  相似文献   

3.
The pathogenicity gene, pthA, of Xanthomonas citri is required to elicit symptoms of Asiatic citrus canker disease; introduction of pthA into Xanthomonas strains that are mildly pathogenic or opportunistic on citrus confers the ability to induce cankers on citrus (S. Swarup, R. De Feyter, R. H. Brlansky, and D. W. Gabriel, Phytopathology 81:802-809, 1991). The structure and the function of pthA in other xanthomonads and in X. citri were further investigated. When pthA was introduced into strains of X. phaseoli and X. campestris pv. malvacearum (neither pathogenic to citrus), the transconjugants remained nonpathogenic to citrus and elicited a hypersensitive response (HR) on their respective hosts, bean and cotton. In X. c. pv. malvacearum, pthA conferred cultivar-specific avirulence. Structurally, pthA is highly similar to avrBs3 and avrBsP from X. c. pv. vesicatoria and to avrB4, avrb6, avrb7, avrBIn, avrB101, and avrB102 from X. c. pv. malvacearum. Surprisingly, marker-exchanged pthA::Tn5-gusA mutant B21.2 of X. citri specifically lost the ability to induce the nonhost HR on bean, but retained the ability to induce the nonhost HR on cotton. The loss of the ability of B21.2 to elicit an HR on bean was restored by introduction of cloned pthA, indicating that the genetics of the nonhost HR may be the same as that found in homologous interactions involving specific avr genes. In contrast with expectations of homologous HR reactions, however, elimination of pthA function (resulting in loss of HR) did not result in water-soaking or even moderate levels of growth in planta of X. citri on bean; the nonhost HR, therefore, may not be responsible for the "resistance" of bean to X. citri and may not limit the host range of X. citri on bean. The pleiotropic avirulence function of pthA and the heterologous HR of bean to X. citri are both evidently gratuitous.  相似文献   

4.
A survey of citrus cultivars in Israel in orchards where Alternaria brown spot was common on Minneola tangelos (mandarin × grapefruit), revealed the occurrence of the disease as typical foliar and fruit lesions on Dancy and Ellendale (mandarins), on Murcott tangor (mandarin × sweet orange), on Nova and Idith (mandarin hybrids), on Calamondin, and on Sunrise and Redblush (grapefruit). Isolates of Alternaria alternata from each of these hosts were proven to be pathogenic to Minneola tangelo.
The host range of A. alternata pv. citri from Israel was assayed by inoculating leaves of diverse citrus genotypes. Several mandarins and their hybrids (Dancy, Kara, King, Wilking, Satsuma, Minneola, Orlando, Mikhal, Idith, Nova, Page, Murcott), grapefruit (Marsh seedless), grapefruit × pummelo (Oroblanco), sweet orange (Shamouti, Valencia, Washington navel) Calamondin, and Volkamer citrus were susceptible. Several mandarins and their hybrids (Clementine, Avana, Yafit, Ortanique), Cleopatra, one sweet orange cultivar (Newhall), pummelo (Chandler), lemon (Eureka), Rough lemon, Rangpur lime, sweet lime, citron, limequat, sour orange, Troyer citrange and Alemow were resistant.  相似文献   

5.
Importing citrus fruits infected by Asiatic citrus canker caused by Xanthomonas citri pv. citri (Xcc) can act as an inoculum source for the disease epidemic in citrus canker-free countries. In this study, the pathogenicity of the causal agent of Asiatic citrus canker surviving on infected Satsuma mandarin fruits was evaluated. The washing solution of infected Satsuma mandarin fruits did not cause lesion formation on the citrus leaves. However, a typical citrus canker lesion was formed on the leaves after inoculation with higher concentrations of the inoculum from the washing solution (washing solution II). It indicated that the pathogenicity of the citrus canker surviving on the symptomatic Satsuma mandarin fruits was not changed. Scanning electron microscopic observation showed that the numbers of bacterial cells on the leaves of Satsuma mandarin which inoculated with the washing solution directly (washing solution I) was less compared to those of leaves inoculated with the washing solution II. This result spports that the pathogenicity of Xcc surviving on Satsuma mandarin fruits may not be changed but that the sucessful infection of citrus caker may depend on the concentration of the inoculum.  相似文献   

6.
7.
The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/AW strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/AW strains. We found that xopAG (=avrGf1) was present in all AW strains, but also in three A* strains genetically distant from AW, and that all xopAG‐containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/AW strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/AW strains when analysing the mechanisms of host specialization.  相似文献   

8.
9.
Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease.  相似文献   

10.
Citrus canker is caused by Xanthomonas citri subsp. citri and is one of the most devastating diseases on citrus plants. To investigate the virulence mechanism of this pathogen, a mutant library of strain 306 containing approximately 22,000 mutants was screened for virulence-deficient mutants in grapefruit (Citrus paradise). Eighty-two genes were identified that contribute to citrus canker symptom development caused by X. citri subsp. citri. Among the 82 identified genes, 23 genes were classified as essential genes, as mutation of these genes caused severe reduction of bacterial growth in M9 medium. The remaining 59 genes were classified as putative virulence-related genes that include 32 previously reported virulence-related genes and 27 novel genes. The 32 known virulence-related genes include genes that are involved in the type III secretion system (T3SS) and T3SS effectors, the quorum-sensing system, extracellular polysaccharide and lipopolysaccharide synthesis, and general metabolic pathways. The contribution to pathogenesis by nine genes (pthA4, trpG, trpC, purD, hrpM, peh-1, XAC1230, XAC1548, and XAC3049) was confirmed by complementation assays. We further validated the mutated genes and their phenotypes by analyzing the EZ-Tn5 insertion copy number using Southern blot analysis. In conclusion, we have significantly advanced our understanding of the putative genetic determinants of the virulence mechanism of X. citri subsp. citri by identifying 59 putative virulence-related genes, including 27 novel genes.  相似文献   

11.
12.
A sensitive and specific assay was developed to detect citrus bacterial canker caused by Xanthomonas axonopodis pv. citri, in leaves and fruits of citrus. Primers XACF and XACR from hrpW homologous to pectate lyase, modifying the structure of pectin in plants, were used to amplify a 561 bp DNA fragment. PCR technique was applied to detect the pathogen in naturally or artificially infected leaves of citrus. The PCR product was only produced from X. axonopodis pv. citri among 26 isolates of Xanthomonas strains, Escherichia coli (O157:H7), Pectobacterium carotovorum subsp. carotovorum, and other reference microbes.  相似文献   

13.
14.
Citrus canker disease is one of the most devastating diseases that attacks citrus, especially limes in the Southern parts of Iran, and is caused by Xanthomonas citri subsp. citri (Xcc). The efficacy of several formulations of copper compounds including Bordeaux mixture, copper oxychloride and copper sulphate in controlling Xcc in Key lime was estimated in vitro and in planta using artificial inoculation. Specific primers were used to detect copper-resistant genes copA, copB and copL in 30 isolates of Xcc. The copA and copL genes were present in all isolates, and copB was detected only in 6 strains. In this study, we observed a very good in vitro growth inhibition activity of copper compounds against Xcc pathotype A. S14 strain (pathotype A*) was the sole isolate that grew on media amended with 2/4 mM of Bordeaux mixture, copper oxychloride and copper sulphate. All other strains (pathotype A) failed to grow on media amended with this concentration. Bordeaux mixture exhibited high efficacy in controlling Xcc in both conditions. However, there were no significant differences in the efficacy of copper oxychloride and copper sulphate at 1.2 mM concentration in planta. A significantly minimum canker necrotic spot and highest disease control was achieved with Bordeaux mixture and copper oxychloride. There was a significant difference in disease severity of the type strain LMG9322 (pathotype A) and Xcc strain S14 (pathotype A*). Our experiments showed that Bordeaux mixture exhibited satisfactory efficacy in controlling the causal agent of citrus canker.  相似文献   

15.
16.
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co‐infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N‐terminal and C‐terminal regions and found that, although both regions elicited HR in nonhost plants, only the N‐terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.  相似文献   

17.
Citrus canker disease caused by Xanthomonas campestris pv, citri is reported on lime in the present study for the first time in United Arab Emirates. The disease was found only on lime in 32 orchards out of 4456 citrus orchards inspected during 1984–85. The citrus canker organism in U.A.E. has a host range similar to “A” strain. Copper hydroxide was significantly superior to all other treatments in decreasing the incidence of citrus canker disease that developed on inoculated lime seedlings. Streptocycline, Kasumin, copper oxychloride and Bordeaux mixture were not effective in reducing the incidence of the disease.  相似文献   

18.
Metabolic fingerprints of 148 strains of Xanthomonas campestris pv. citri originating from 24 countries and associated with various forms of citrus bacterial canker disease (CBCD) were obtained by using the Biolog substrate utilization system. Metabolic profiles were used to attempt strain identification. Only 6.8% of the studied strains were correctly identified when the commercial Microlog 2N data base was used alone. When the data base was supplemented with data from 54 strains of X. campestris pv. citri (40 CBCD-A strains, 8 CBCD-B strains, and 6 CBCD-C strains) and data from 43 strains of X. campestris associated with citrus bacterial spot disease, the percentage of correct identifications was 70%. Thus, it is recommended that users supplement the commercial data base with additional data prior to using the program for identification purposes. The utilization of Tween 40 in conjunction with other tests can help to differentiate strains associated with CBCD and citrus bacterial spot disease. These results confirmed the separation of X. campestris pv. citri into different subgroups (strains associated with Asiatic citrus canker [CBCD-A], cancrosis B [CBCD-B], and Mexican lime canker [CBCD-C]). The utilization of l-fucose, d-galactose, and alaninamide can be used as markers to differentiate strains associated with these groups. A single strain associated with bacteriosis of Mexican lime in Mexico (CBCD-D) was closely similar to CBCD-B strains.  相似文献   

19.
The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号