首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Mg2+ and guanine nucleotides on glucagon binding to its receptor were studied using [125I-Tyr10]monoiodoglucagon. Contrary to findings with beta-adrenergic receptors, high affinity binding of the stimulatory hormone was not dependent on Mg2+ and low affinity binding could be obtained on nucleotide addition regardless of presence of Mg2+. GDP, guanyl-5'-yl thiophosphate (GDP beta S), GTP, and guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) were all able to induce low affinity hormone binding. Since the Ns component of adenylyl cyclase, with which the receptor interacts, is inactive in stimulating the catalytic component C of adenylyl cyclase in the absence of Mg2+, both before and after GDP addition, it is suggested that Ns has at least two domains that change conformation independently of each other: a r domain, that interacts with the receptor and confers to it high affinity binding, and a c domain, that interacts with the catalyst C and stimulates it. It is suggested further that Ns is r+c- when stabilizing the receptor in its conformation with high affinity for hormone, and r-c- when under the influence of GDP which results in the receptor adopting the conformation that exhibits low affinity for the hormone. Comparison of potencies of the four nucleotides to induce low affinity binding showed that GDP and GDP beta S were equipotent and 10 times more potent than GTP and 100 times more potent than GMP-P(NH)P. Under the conditions used it was impossible to substantiate that the effects of GTP or GMP-P(NH)P were not due to formation of GDP from GTP or presence of GDP-like material in GMP-P(NH)P. It is suggested that, contrary to widely held opinions, GDP and GDP-like compounds, and not GTP or its analogs, are responsible for the lowering of the affinity of adenylyl cyclase stimulating receptors for their hormones or agonists. Furthermore, the experiments suggest that the c+ conformation of the c domain of Ns co-exists with the r+ and not the r- conformation of its r domain.  相似文献   

2.
The effects of Mg2+ or ethylenediaminetetraacetic acid (EDTA) on 125I-glucagon binding to rat liver plasma membranes have been characterized. In the absence of guanosine 5'-triphosphate (GTP), maximal binding of 125I-glucagon occurs in the absence of added Mg2+. Addition of EDTA or Mg2+ diminishes binding in a dose-dependent manner. In the presence of GTP, maximal binding occurs in the presence of 2.5 mM Mg2+ (EC50 = 0.3 mM) while EDTA or higher concentrations of Mg2+ diminish binding. Response to exogenous Mg2+ or EDTA depends on the concentration of Mg2+ in the membranes and may vary with the method used for membrane isolation. Solubilized 125I-glucagon-receptor complexes fractionate on gel filtration columns as high molecular weight, GTP-sensitive complexes in which receptors are coupled to regulatory proteins and lower molecular weight, GTP-insensitive complexes in which receptors are not coupled to other components of the adenylyl cyclase system. In the absence of GTP, 40 mM Mg2+ or 5 mM EDTA diminishes receptor affinity for hormone (from KD = 1.2 +/- 0.1 nM to KD = 2.6 +/- 0.3 nM) and the fraction of 125I-glucagon in high molecular weight receptor-Ns complexes without affecting site number (Bmax = 1.8 +/- 0.1 pmol/mg of protein). Thus, while GTP promotes disaggregation of receptor-Ns complexes, Mg2+ or EDTA diminishes the affinity with which these species bind hormone. In the presence of GTP, hormone binds to lower affinity (KD = 9.0 +/- 3.0 nM), low molecular weight receptors uncoupled from Ns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have previously reported detergent (Triton X-100) solubilization of a follitropin (FSH) receptor-rich fraction from light membranes of bovine testis that responded to exogenous FSH by activation of adenylate cyclase (Dattatreyamurty, B., Schneyer, A., and Reichert, L. E., Jr. (1986) J. Biol. Chem. 261, 13104-13113). Upon gel filtration of the detergent-extract through Sepharose-6B, two fractions were separated. Each specifically bound [3H]guanosine 5'-imidotriphosphate (Gpp(NH)p) and had guaninetriphosphatase (GTPase) activity. Of these, one fraction (6B-Fraction-1) also bound radioiodinated human follitropin (hFSH), indicating a coelution of the nucleotide-binding protein with receptor. The other fraction (6B-Fraction-2) did not contain detectable FSH receptor activity. Several lines of evidence suggest that 6B-Fraction-1 is a complex consisting of FSH receptor and a guanine nucleotide regulatory protein, probably Ns. 1) The GTP-binding and FSH-binding activities of 6B-Fraction-1 were retained by a GTP-affinity column, and their retention by the affinity matrix could be prevented by simultaneous addition of free Gpp(NH)p. 2) When exogenous GTP was added to 6B-Fraction-1, binding of 125I-hFSH was reduced compared to controls lacking exogenous GTP. This effect of GTP was highly specific and noncompetitive, indicating that GTP did not bind to receptor. In addition, the affinity of receptor for FSH was decreased, and the rate and degree of dissociation of bound labeled FSH from receptor were increased in the presence of exogenous GTP, each in concentration-dependent manner. 3) Exposure of 6B-Fraction-1 to higher concentration of Triton X-100 reduced significantly the receptor-associated GTP-binding activity and also rendered the hormone-binding activity insensitive to GTP. 4) Treatment of highly purified testis membranes with cholera toxin plus NAD, but not pertussis toxin plus NAD, eliminated the ability of GTP to modulate the 125I-hFSH binding to receptor. 5) After cholera toxin-induced [32P]ADP-ribosylation of testis membranes, a major peak of radioactivity (presumably Ns) was coeluted with FSH receptor activity from the Sepharose-6B column. These results and the observation that the effect of GTP is noncompetitive at FSH receptor level suggest that FSH binding inhibition and the increased rate of hormone dissociation from receptor were the result of GTP interaction with a guanine nucleotide regulatory protein, probably Ns, which itself was functionally associated with the FSH receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Guanine nucleotides and Mg2+ differentially regulate agonist binding to adenosine (Ri) receptors in fat-cell plasma membranes. GTP alone decreases binding of the agonist ligand [3H]N6-cyclohexyladenosine (CHA) by increasing the dissociation constant (Kd). Mg2+ alone also decreases [3H]CHA binding, which is associated with a decrease in the number of receptors and in the dissociation constant. In the presence of Mg2+, the effect of GTP is to increase [3H]CHA binding by increasing the total number of receptors. It thus appears that Mg2+ acts specifically at a bivalent-cation site which, with GTP, regulates agonist binding. This putative Mg site is highly sensitive to alkylating agents. Mild treatment with N-ethylmaleimide (NEM) abolishes the characteristic GTP effect on agonist binding in the presence of Mg2+. In addition, the effect of Mg2+ alone is also eliminated. The effect of GTP alone is largely unaltered. Studies of the adenylate cyclase activity indicate that this NEM treatment also abolishes the inhibition of basal activity by adenosine analogues, whereas guanylyl imidodiphosphate inhibition of forskolin-stimulated activity is only slightly impaired at this NEM concentration. These observations indicate that a Mg2+ 'site' or 'component' is required for the integration of receptor (Ri) occupancy with regulation of catalytic activity (C). The regulatory role of Mg2+ is more demonstrable in receptor-GTP-regulatory-protein (Ri-Ni) interactions than in GTP-regulatory-protein-catalytic-unit (Ni-C) interactions.  相似文献   

5.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

7.
A1 adenosine receptors and guanine nucleotide-binding proteins (G proteins) solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate have been co-purified from bovine cerebral cortex. A portion of solubilized receptors which displays high affinity GTP-sensitive agonist binding (40-50%) adheres tightly to agonist affinity columns composed of N6-aminobenzyladenosine-agarose. A1 adenosine receptors and G proteins are rapidly and selectively coeluted from agonist columns by the addition of 8-p-sulfophenyltheophylline, but only in combination with Mg2+-GTP or N-ethylmaleimide, agents which lower the affinity of receptors for agonists. Purified receptors and G protein alpha-subunits can be detected with the potent A1-selective antagonist radioligand, [125I]3-(4-amino-3-iodo)phenethyl-1-propyl-8-cyclopentylxanthine (125I-BW-A844U) and [35S]guanosine 5'-3-O-(thio)triphosphate [( 35S]GTP gamma S), respectively. Pretreatment of solubilized receptors with 0.1 mM N-ethylmaleimide or 0.1 mM R-phenylisopropyladenosine abolishes adsorption of receptors and G proteins to affinity columns. Following removal of 8-p-sulfophenyltheophylline and GTP, purified receptors bind agonists (2 sites) and antagonists (1 site) with affinities similar to crude soluble receptors and typical of A1 receptors. Some receptors may be denatured as a result of purification since only 23% of the radioligand binding sites which adhere to the affinity column can be detected in the eluate. The Bmax of purified receptors, 820 +/- 100 pmol/mg protein (n = 3) is 1800-fold higher than crude soluble receptors. The specific activity of [35S]GTP gamma S binding sites in affinity column eluates is 4640 pmol/mg protein. Assuming a 1:1 stoichiometry, this specific activity indicates that receptor-G protein complexes are greater than 50% pure following affinity chromatography. The photoaffinity labeled purified receptor was identified by polyacrylamide gel electrophoresis as a single band with a molecular mass of 35 kDa which when deglycosylated undergoes a characteristic shift in molecular mass to a sharp band at 32 kDa. In addition to the receptor, silver staining revealed polypeptides with molecular masses of 39 and 41 kDa, which are ADP-ribosylated by pertussis toxin, and 36 kDa corresponding to G protein beta-subunits.  相似文献   

8.
Specific binding of 3H-labeled platelet-activating factor (PAF) to rabbit platelet membranes was found to be regulated by monovalent and divalent cations and GTP. At 0 degrees C, inhibition of [3H]PAF binding by sodium is specific, with an ED50 of 6 mM, while Li+ is 25-fold less effective. On the contrary, K+, Cs+, and Rb+ enhance the binding. The divalent cations, Mg2+, Ca2+, and Mn2+ enhance the specific binding 8-10-fold. From both Scatchard and Klotz analyses, the inhibitory effect of Na+ is apparently due to an increase in the equilibrium dissociation constant (KD) of PAF binding to its receptors. However, the Mg2+-induced enhancement of the PAF specific binding may be attributed to an increased affinity of the receptor and an increased availability of the receptor sites. In the presence of Na+, PAF receptor affinity decreased with increasing temperature with a 100-fold sharp discontinuous decrease in receptor affinity at 24 degrees C. In contrast, the Mg2+-induced increase is independent of temperature suggesting that the Mg2+ regulatory site is different from Na+ regulatory site. [3H]PAF binding is also specifically inhibited by GTP; other nucleotides have little effect. PAF also stimulates hydrolysis of [gamma-32P]GTP with an ED50 of 0.7 nM, whereas 3-O-hexadecyl-2-O-acetyl-sn-glyceryl-1-phosphorylcholine showed no activity even at 10 microM. Moreover, such stimulatory effect of PAF is dependent on Na+ and can be abolished by the PAF-specific receptor antagonist, kadsurenone, but not by an inactive analog, kadsurin B. These results suggest that the PAF receptor may be coupled with the adenylate cyclase system via an inhibitory guanine nucleotide regulatory protein.  相似文献   

9.
Muscarinic receptors were identified in membrane preparations from bovine cerebral arteries by the specific binding of [3H]-quinuclidinyl benzilate. The total amount of binding sites is relatively high: 1.5 pmol/mg protein, as compared to 0.91 pmol/mg for bovine cerebral cortex and 0.08 pmol/mg for heart muscle. In this study we show that the majority of these sites correspond to M2-receptors: 84% of the sites display low affinity for pirenzepine. In addition, GTP causes a rightward shift and steepening of the carbachol competition binding curve. In the presence of GTP, the alkylating reagent N-ethylmaleimide causes a 28-fold increase of the affinity for carbachol. This phenomenon is also observed on bovine heart membranes where muscarinic receptors are known to be of the M2 type. In contrast, muscarinic receptors in cerebral cortex, predominantly of the M1-type, show only a 4-fold increase in agonist affinity by N-ethylmaleimide. These findings suggest that the ability of N-ethylmaleimide to modulate the agonist affinity is an additional criterion for the characterization of muscarinic M2-type receptors.  相似文献   

10.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Binding of GTP and GDP to tubulin in the presence or absence of Mg2+ was measured following depletion of the exchangeable site--(E-site) nucleotide. The E-site nucleotide was displaced with a large molar excess of the nonhydrolyzable GTP analogue, GMPPCP, followed by the removal of the analogue. Using a micropartition assay, the equilibrium constant measured in 0.1 M 1.4-piperazinediethanesulfonic acid (Pipes), pH 6.9, 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, 1 mM dithiothreitol, and 1 mM MgSO4 at 4 degrees C was 9.1 x 10(6) M-1 for GTP and 4.4 x 10(6) M-1 for GDP. Removal of Mg2+ reduced the binding affinity of GTP by 160-fold while the affinity of GDP remained essentially unchanged. Similar values were obtained if 0.1 M Tris, pH 7.0, was used instead of Pipes. Binding of Mg2+ to tubulin containing GTP, GDP, or no nucleotide at the E-site was also examined by the micropartition method. Tubulin-GTP contained one high affinity Mg2+ site (K alpha = 1.2 x 10(6) M-1) in addition to the one occupied by Mg2+ as tubulin is isolated, while only weak Mg2+ binding to tubulin-GDP and to tubulin with a vacant E-site (K alpha = 10(3) M-1) was observed. It is suggested that Mg2+ binds to the beta and gamma phosphates of GTP, and only to the beta phosphate of GDP, as shown for the H. ras p21 protein.  相似文献   

12.
The guanine nucleotide binding properties of rap1 protein purified from human neutrophils were examined using both the protein kinase A-phosphorylated and the non-phosphorylated forms of the protein. Binding of GTP[S] (guanosine 5'-[gamma-thio]triphosphate) or GDP was found to be slow in the presence of free Mg2+, but very rapid in the absence of Mg2+. The binding of guanine nucleotides was found to correlate with the loss of endogenous nucleotide from the rap1 protein, which was rapid in the absence of Mg2+. The relative affinities of GTP and GDP for the binding site on rap1 were modulated by the presence of Mg2+, with a preferential affinity (approx. 15-fold) for GTP observed only in the absence of this bivalent cation. The dissociation of GDP from rap1 was not affected by the G-protein beta/gamma-subunit complex. Phosphorylation of rap1 in vitro by protein kinase A did not modify any of the observed nucleotide-binding parameters. Furthermore, the ability of a cytosolic rap1 GTPase-activating protein to stimulate neutrophil rap1 GTP hydrolysis was not modified by phosphorylation. These data suggest that the activation of rap in vivo may be regulated by the release of endogenous GDP, but that phosphorylation by protein kinase A does not affect guanine nucleotide binding or hydrolysis.  相似文献   

13.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

14.
The affinity of many types of membrane-bound receptors coupled negatively to adenylate cyclase is regulated by divalent and monovalent cations and by guanine nucleotides (GTP). We used alpha 2-adrenoreceptors of human platelets as a model system to find out the effect of limited proteolysis with trypsin on the regulation of the alpha 2-adrenoreceptor-agonist interactions by GTP and Na+. We found that partial proteolysis of the membranes with trypsin for 3 min at 35 degrees C reduced specific [3H]yohimbine binding to platelet membranes to 40-50% of control. The following characteristics of the receptors remaining after proteolysis were similar to those of untreated membranes: affinity for the agonist and antagonists, stereospecificity, and kinetic properties. Trypsin also did not modify the ability of the receptor's change from a high to low affinity state in the presence of Na+. These findings suggested that the capability of the receptors to recognize the ligand and their ability to undergo a conformational change in the presence of the agonist were retained despite a reduction in the total number of receptors by trypsin. However, the modulation of the receptor--agonist interactions by GTP or Mg2+ was lost in the trypsin-pretreated membranes, while the modulation by Na+ remained intact. It is suggested that the loss of GTP or Mg2+ effects on receptor--ligand interactions produced by trypsin may be due to trypsin-induced disruption of subunits (alpha i, beta gamma) interactions of Gi protein.  相似文献   

15.
BACKGROUND: Based on sequence similarities, Arf-like (ARL) proteins have been assigned to the Arf subfamily of the superfamily of Ras-related GTP binding proteins. They have been identified in several isoforms in a wide variety of species. Their cellular function is unclear, but they are proposed to regulate intracellular transport. RESULTS: The 1.7 A crystal structure of murine ARL3-GDP provides a first insight into the structural features of this subgroup of Ar proteins. The N-terminal extension of ARL3 folds into an elongated loop region that is hydrophobically anchored onto the surface by burying 1440 A2. The features observed suggest that ARL3 releases its N terminus and undergoes a beta sheet register shift upon the binding of GTP. The structure and kinetic experiments with fluorescent mGDP demonstrate that tight GDP (but not GTP) binding is achieved in the absence of a magnesium ion. This is due to a lysine residue in the active site, close to the canonical Mg2+ site found in other GTP binding proteins. This is a distinct feature separating ARL2 and ARL3 from Arf proteins. CONCLUSION: The disturbed magnesium binding site and the independence of GDP coordination from the presence of Mg2+ separate ARL2 and ARL3 from Arf proteins. The D sheet register shift, which is similar to that of Arf, that is observed in the present structure, along with the postulated release of the N-terminal extension and the concomitant exposure of a patch of conserved hydrophobic residues in this region suggest that ARL proteins might be localized to target membranes upon exchange of GDP to GTP. Contrary to the situation in Arf, however, the conformational change to ARL-GTP does not require the presence of membranes and might thus be energetically unfavored. Together with the very low affinity described for the interaction of ARL3 with Mg-GTP, this suggests that ARL protein activation requires the presence of effectors stabilizing the GTP coordination rather than guanine nucleotide exchange factors (GEFs).  相似文献   

16.
Mg2+ dependence of guanine nucleotide binding to tubulin   总被引:1,自引:0,他引:1  
The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1.  相似文献   

17.
A new method was developed to follow the rate of activation of adenylate cyclase in rat brain membranes by rapid freezing and N-ethylmaleimide treatment at 0 degrees C. This method was used to investigate the relationship between the rate of activation of adenylate cyclase by p(NH)ppG and GTP gamma S and their apparent affinities. These studies established the following. 1) The kinetics of activation by p(NH)ppG and GTP gamma S were indistinguishable although the apparent affinity of p(NH)ppG was 20-fold lower than the affinity of GTP gamma S. Activation was first order, kobs varying approximately 1.5-fold (average t 1/2 = 3.5 min, 30 degrees C) between 20-90% occupancy by either guanine nucleotide. 2) Final levels of activity were strictly dependent on the concentration of the nucleotides in a saturable manner. 3) Mg2+ increased the apparent affinity of either guanine nucleotide by 10-20-fold between 0.1 microM and 3 mM free Mg2+ in the presence of 2 mM EDTA but did not enhance the rate or maximal extent of activation. 4) The effects of Mg2+ were expressed through two independent classes of sites with affinities in the nanomolar and micromolar range. 5) A Mg2+ X guanine nucleotide complex was not the substrate for activation. The affinity of Mg2+ for nucleotides was determined as 6.25 mM GTP gamma S, 0.930 mM GTP, 0.156 mM p(NH)ppG. 6) Full activation by p(NH)ppG was completely reversible but activation by GTP gamma S was only partially reversible. These results suggest that: activation of adenylate cyclase in native membranes does not require Mg2+ or irreversible binding of the guanine nucleotide and there are two independent pathways for formation of active adenylate cyclase. A minimal mechanism for activation is discussed in light of current models.  相似文献   

18.
Cholera toxin elicited 5- to 7-fold stimulation of adenylyl cyclase activity. Half-maximal activation was at 4.42 micrograms/ml cholera toxin. Cholera toxin-mediated activation was time dependent. At 0.1 mM ATP, both guanosine triphosphate (GTP) and nicotinamide adenine dinucleotide (NAD+) were required for cholera toxin activation of luteal adenylyl cyclase. The concentrations of GTP and NAD+ required for half-maximal activation were 1 and 200 microM, respectively. The GTP requirement could be eliminated by increasing the ATP concentration to 1.0 mM. Guanosine-5'-O-(2-thiodiphosphate) [GDP beta S] did not support cholera toxin activation of the luteal enzyme. Cholera toxin treatment increased GTP-stimulated activity, did not significantly alter guanyl-5'-yl imidodiphosphate [GMP-P(NH)P]-stimulated activity, and depressed NaF-stimulated activity. Furthermore, toxin treatment resulted in a 3.4-fold reduction in the Kact values for ovine luteinizing hormone (oLH) to activate adenylyl cyclase. A similar reduction in Kact values for oLH was obtained when concentration-effect curves performed in the presence of GMP-P(NH)P were compared to those performed in the presence of GTP. In addition, luteal membranes treated with cholera toxin and [32P]NAD+ were subjected to autoradiographic analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This treatment resulted in the [32P] adenosine diphospho (ADP)-ribosylation of a 45,000-dalton protein doublet, corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (Ns). As with activation of adenylyl cyclase activity, cholera toxin-specific [32P] ADP-ribosylation was time dependent and increased with increasing concentrations of cholera toxin. GTP, GMP-P(NH)P, and NaF, but not GDP beta S, were capable of supporting [32P] ADP-ribosylation of the protein doublet. oLH did not alter the ability of cholera toxin to ADP-ribosylate the protein activation of luteal adenylyl cyclase activity is due to the ADP-ribosylation of the alpha subunit of Ns and the concomitant inhibition of a GTPase associated with adenylyl cyclase.  相似文献   

19.
The biological activity of elongation factor 2 (EF-2) following NAD+ - and diphtheria-toxin-dependent ADP-ribosylation was studied (i) in translation experiments using the reticulocyte lysate system and (ii) in ribosomal binding experiments using either reconstituted empty rat liver ribosomes or programmed reticulocyte polysomes. Treatment of the lysates with toxin and NAD+ at a NAD+/ribosome ratio of 4 resulted in a 90% inhibition of the amino acid incorporation rate. The inhibition was overcome by the addition of native EF-2. At this level of inhibition more than 90% of the EF-2 present in the lysates was ADP-ribosylated and the total ribosome association of EF-2 was reduced by approx. 50%. All of the remaining unmodified factor molecules were associated with the ribosomes, whereas only about 3% of the ribosylated factor was ribosome-associated. The nucleotide requirement for the binding of EF-2 to empty reconstituted rat liver ribosomes and programmed reticulocyte polysomes was studied together with the stability of the resulting EF-2 X ribosome complexes using purified 125I-labelled rat liver EF-2. With both types of ribosomes, the complex formation was strictly nucleotide-dependent. Stable, high-affinity complexes were formed in the presence of the non-hydrolysable GTP analogue guanosine 5'-(beta, gamma-methylene)triphosphate (GuoPP[CH2]P). In contrast to the reconstituted ribosomes, GTP stimulated the formation of high-affinity complexes in the presence of polysomes, albeit at a lower efficiency than GuoPP[CH2]P. The formation of high-affinity complexes was restricted to polysomes in the pretranslocation phase of the elongation cycle. Low-affinity post-translocation complexes, demonstrable after fixation, were formed in the presence of GTP, GuoPP[CH2]P and GDP. In polysomes, these complexes involved a different population of particles than did the high-affinity complexes. In the binding experiments using reconstituted or programmed ribosomes, the pretranslocation binding of EF-2 observed in the presence of GuoPP[CH2]P was reduced by approx. 50% after ADP-ribosylation, whereas the post-translocation binding in the presence of GDP was unaltered. The data indicate that the inhibition of translocation caused by diphtheria toxin and NAD+ is mediated through a reduced affinity of the ADP-ribosylated EF-2 for binding to ribosomes in the pretranslocation state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号