首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A STUDY OF THE INNERVATION OF THE TAENIA COLI   总被引:11,自引:2,他引:9       下载免费PDF全文
An electrophysiological and anatomical study of the guinea pig taenia coli is reported. Changing the membrane potential of single cells cannot modulate the rate of firing action potentials but does reveal electrical coupling between the cells during propagation. The amplitude of the junction potentials which occur during transmission from inhibitory nerves is unaffected in many cells during alteration of the membrane potential, indicating electrical coupling during transmission. The taenia coli is shown to consist of smooth muscle bundles which anastomose. There are tight junctions between the cells in the bundles, and these probably provide the pathway for the electrical coupling. The smooth muscle cells towards the serosal surface of the taenia coli are shown electrophysiologically to have an extensive intramural inhibitory innervation, but a sparse sympathetic inhibitory and cholinergic excitatory innervation. These results are in accordance with the distribution of these nerves as determined histochemically. As single axons are only rarely observed in the taenia coli, it is suggested that the only muscle cells which undergo permeability changes during transmission are those adjacent to varicosities in the nerve bundles. The remaining muscle cells then undergo potential changes during transmission because of electrical coupling through the tight junctions.  相似文献   

2.
Summary The dilatator muscle cells form short projections into the stroma of the iris. Close to these projections run several nerve bundles. The unmyelinated axons often show enlargements (varicosities) containing mitochondria and vesicles. Several of the varicosities are partly denuded of the Schwann cell and are covered only by a basement membrane. The varicosities are then separated from the muscle cells only by basement membranes and a 0.1–1 stromal space. The ultrastructure of the iris dilatator muscle thus also fits the view that the autonomic ground plexus with its varicosities forms the real innervation apparatus.The smallest space between axon and muscle has a width of 700–900 Å and is cemented with basement membrane material. It is suggested that the main function of these contact sites is not to transmit a nerve impulse but to anchor the nerves to their effector organ.This study has been supported by grants from the Swedish State Research Council (U 267) and the United States Public Health Service (N B 2854-04).  相似文献   

3.
Autonomic innervation of receptors and muscle fibres in cat skeletal muscle   总被引:3,自引:0,他引:3  
Cat hindlimb muscles, deprived of their somatic innervation, have been examined with fluorescence and electron microscopy and in teased, silver preparations; normal diaphragm muscles have been examined with electron microscopy only. An autonomic innervation was found to be supplied to both intra- and extrafusal muscle fibres. It is not present in all muscle spindles and is not supplied at all to tendon organs. Fluorescence microscopy revealed a noradrenergic innervation distributed to extrafusal muscle fibres and some spindles. On the basis of the vesicle content of varicosities the extrafusal innervation was identified as noradrenergic (32 axons traced), and the spindle innervation as involving noradrenergic, cholinergic and non-adrenergic axons (14 traced). Some of the noradrenergic axons that innervate spindles and extrafusal muscle fibres are branches of axons that also innervate blood vessels. We cannot say whether there are any noradrenergic axons that are exclusively distributed to intra- or extrafusal muscle fibres. The varicosities themselves may be in neuroeffective association with striated muscle fibres only, or with both striated fibres and the smooth muscle cells in the walls of blood vessels. The functional implications of this direct autonomic innervation of muscle spindles and skeletal muscle fibres are discussed and past work on the subject is evaluated.  相似文献   

4.
Dutton  J. L.  Hansen  M. A.  Balcar  V. J.  Barden  J. A.  Bennett  M. R. 《Brain Cell Biology》1999,28(1):4-16
Postnatal development of the distribution of different isoforms of purinergic (P2X) receptors on smooth muscle cells in relation to the development of the innervation of the cells by nerve varicosities in the rat urinary bladder has been determined with immunofluorescence and confocal microscopy. Antibodies against the extracellular domains of the P2X1 to P2X6 receptors were used to detect the receptors in the bladder. Several other antibodies were used to identify sympathetic varicosities and Schwann cells. At one day postnatal (D1) there were few strings of varicosities denoting isolated axons, with most axons confined to large nerve trunks. Small size clusters of P2X1 to P2X6 receptor subtypes (about 0.4 µm diameter) were observed in the muscle which were independent of each other, and sometimes juxtaposed to the rare isolated varicosity strings. At D4 large numbers of strings of varicosities could be discerned throughout the detrusor. Most of these clouds of small P2X1 to P2X6 receptor clusters in their immediate vicinity. Some of these were colocalised with the varicosities, which were of parasympathetic origin as they failed to counter-stain with antibodies to tyrosine hydroxylase. Up to D14 there was a gradual coalescence of many of the isolated P2X1–6 small receptor clusters so that they became colocalised, often at varicosities. Most of the varicosities in isolated strings possessed receptor clusters at this time. By D21 it was rare to find varicosity strings in the detrusor that were not either in close juxtaposition with P2X small receptor clusters or possessing such clusters in colocalisation. However, large numbers of small P2X receptor clusters, many of which consisted of a mixture of isoforms, could be found spatially unrelated to nerve varicosities throughout the detrusor muscle. In the adult, single axons were either coextensive with one or more isoforms of P2X receptor clusters or these were immediately juxtaposed to the axons so that is was rare to find a varicosity that did not possess a receptor cluster. However, different combinations of colocalised P2X receptor isoforms could still be discerned in small clusters unrelated to varicosities. These observations are discussed in relation to the mechanism of formation of the receptor clusters and their migration beneath parasympathetic varicosities during development.  相似文献   

5.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

6.
Lymph node nerve endings have been studied in 1- to 48-day-old mice. Serial sections of Epon-embedded lymph nodes were observed under the electron microscope to find the nerve endings. Most lymph node nerve fibers finally reach the smooth muscle cells of arterioles and muscular venules. Both kinds of vascular endings are similar, although endings are less numerous on venules. Nerve endings consist of one or more nerve processes surrounded by a usually incomplete Schwann cell sheath; frequently, axons show wide areas directly facing the muscle cells. The distance between such a naked axon and a myocyte ranges from 100 to 800 nm. Small granulated and clear vesicles are especially abundant in varicosities of nerve processes that are located very close to muscle cells. Nerve endings of lymph node vasculature probably correspond to vasomotor sympathetic adrenergic endings, regulating the degree of contraction of vessels which have a muscular layer. Other kinds of nerve endings also exist in lymph nodes: some axons appear free in the stroma and contact the surfaces of reticular cells; the latter also extend delicate cytoplasmic processes that surround the axons. The functional significance of nerve cell-reticular cell contacts is unknown.  相似文献   

7.
The location and distribution of neural crest-derived Schwann cells during development of the peripheral nerves of chick forelimbs were examined using chick-quail chimeras. Neural crest cells were labeled by transplantation of the dorsal part of the neural tube from a quail donor to a chick host at levels of the neural tube destined to give rise to brachial innervation. The ventral roots, spinal nerves, and peripheral nerves innervating the chick forelimb were examined for the presence of quail-derived neural crest cells at several stages of embryonic development. These quail cells are likely to be Schwann cells or their precursors. Quail-derived Schwann cells were present in ventral roots and spinal nerves, and were distributed along previously described neural crest migratory pathways or along the peripheral nerve fibers at all stages of development examined. During early stages of wing innervation, quail-derived Schwann cells were not evenly distributed, but were concentrated in the ventral root and at the brachial plexus. The density of neural crest-derived Schwann cells decreased distal to the plexus, and no Schwann cells were ever seen in advance of the growing nerve front. When the characteristic peripheral nerve branching pattern was first formed, Schwann cells were clustered where muscle nerves diverged from common nerve trunks. In still older embryos, neural crest-derived Schwann cells were evenly distributed along the length of the peripheral nerves from the ventral root to the distal nerve terminations within the musculature of the forelimb. These observations indicate that Schwann cells accompany axons into the developing limb, but they do not appear to lead or direct axons to their targets. The transient clustering of neural crest-derived Schwann cells in the ventral root and at places where axon trajectories diverge from one another may reflect a response to some environmental feature within these regions.  相似文献   

8.
Smooth muscle cells of the external longitudinal coat of the guinea pig vas deferens were followed for 480 mu at 4.5-mu intervals. Muscle bundles and fibers interwove, facilitating intermuscular and neuromuscular contacts. The ribbon- or rodlike muscle cells were about 450 mu long, 3,000 mu3 in volume, and 4,500 mu2 in area. The thickened nuclear zone day anywhere along the middle one-third of the cell. Intercellular distances were 500-800 A. Intrusions were rare, and tight-junctions absent. At any level in a field of 80 muscle fibers there were 10-15 nerve bundles, each containing several varicose axons. Bundles and axons divided. Axons, en passage, were frequently within 500-1,000 A of a muscle fiber. En passage close contacts were rate. Axon terminations were bare, and bare axons invariably terminated. Bare terminations had scattered vesicle-laden varicosities and were from 10-60 mu in length, and all ended within 500 A of muscle fibers. Some made close contact with muscle fibers. Less than half of the muscle cells received this close contact, but some cells were approached by more than one termination. Most terminations involved more than one cell. Some cells had little or no innervation. Some groups of cells had a rich innervation. There was very little evidence of sensory innervation. These conclusions are not valid for other smooth muscles.  相似文献   

9.
In the muscular dysgenic (mdg/mdg) mouse embryo, both muscle and nerve are affected early during embryogenesis, from Embryonic Day 13 (E13). We now find that the mutation affects not only the degree of differentiation of the muscle and the pattern of motor innervation but also the relationship between Schwann cell and axon. We studied the sciatic nerve of normal and mdg/mdg embryos between E13 and E18 at the ultrastructural level. We found that in mdg/mdg nerve, (1) Schwann cells do not totally enwrap the growing axons in their most distal part, close to the growth cone, and (2) the terminal Schwann cells do not correctly surround the nerve endings and seal the corresponding synaptic contacts. Moreover, both types of mutant Schwann cell lack a normal electron-dense basal lamina. We found that there is an excess of axons relative to the Schwann cell population in the intramuscular portions of the mdg/mdg sciatic nerve. Our observations point toward a possible defect of the mechanism of migration and maturation of Schwann cells. Such a defect may in turn affect primarily or secondarily the mutual influences between Schwann cell and axon and lead to some or all of the major abnormalities observed in the mdg/mdg neuromuscular system, namely, multifocal polyinnervation, immature axon-myotube contacts, and abnormal T-tubule-sarcoplasmic reticulum junctions.  相似文献   

10.
We found a low-molecular-mass, fluorescent dye, Calcein blue am ester (CB), that labels terminal Schwann cells at neuromuscular junctions in vivo without damaging them. This dye was used to follow terminal Schwann cells at neuromuscular junctions in the mouse sternomastoid muscle over periods of days to months. Terminal Schwann cell bodies and processes were stable in their spatial distribution over these intervals, with processes that in most junctions were precisely aligned with motor nerve terminal branches. Three days after nerve cut, the extensive processes elaborated by terminal Schwann cells in denervated muscle were labeled by CB. The number and length of CB-labeled terminal Schwann cell processes decreased between 3 days and 1 month after denervation, suggesting that terminal Schwann cell processes are only transiently maintained in the absence of innervation. During reinnervation after nerve crush, however, terminal Schwann cell processes were extended in advance of axon sprouts, and these processes persisted until reinnervation was completed. By viewing the same junctions twice during reinnervation, we directly observed that axon sprouts used existing Schwann cell processes and chains of cell bodies as substrates for outgrowth. Thus, CB can be used to monitor the dynamic behavior of terminal Schwann cells, whose interactions with motor axons and their terminals are important for junction homeostasis and repair.  相似文献   

11.
The ultrastructure and acetylcholinesterase activity of the intrinsic innervation of the sphincter of Oddi of eight adult dogs was studied by electron microscopy. A rich distribution of unmyelinated axons embedded individually or as groups within Schwann cell cytoplasm ("innervation fasciculee"), is to be observed. A few myelinated fibres were also observed. Many of the axons are acetylcholinesterase-positive. Three main types of nerve terminals are distinguished according to their vesicle populations. Individual nerve cells or small groups of nerve cells were scattered between the smooth muscle bundles and in the lamina glandularis mucosae. The cytoplasm of some neurons contains many electron dense spherical bodies resembling "myeloid bodies", and many lysosomes. Nerve terminals synapse onto both neuronal perikarya and their dendrites. Within the nerve fascicles, close appositions between the terminals occur frequently probably representing the most peripheral inter-neuronal integrative link in the neural regulation of the function of the sphincter of Oddi. -- The gap between nerve terminals and smooth muscle cells usually measures several thousands of A. Closer appositions are seldom seen, and no synaptic complexes can be observed.  相似文献   

12.
Summary Plexuses of cholinergic nerve terminals were demonstrated (acetylcholinesterase staining) in pial arteries (down to a diameter of about 15) at the base of the brain and on the brain convexities of mice, rats, rabbits, hamsters, guinea-pigs, and cats. The pial veins were less well supplied than the arteries. Consecutive formaldehyde gas treatment (to visualize adrenergic nerves) and acetylcholinesterase staining revealed that the adrenergic and cholinergic plexuses followed each other closely, the axon terminals running together in the same Schwann cell strands. This was confirmed by electron microscopy after KMnO4 fixation or 5-hydroxydopamine treatment. The varicosities of cholinergic and adrenergic axons were sometimes seen as close as 250 Å. In the neuro-effector area, the terminals of both nerve types (naked or surrounded by an incomplete Schwann cell covering) approached the smooth muscle cells as close as 800–1100 Å, and they were separated from the latter only by the fused neuronal and muscular basement membranes. In this area axo-axonal contacts were observed. The adrenergic, but not the cholinergic, nerves disappeared after bilateral removal of the superior cervical sympathetic ganglia. Isolated cat middle cerebral artery contracted strongly with acetylcholine, and the effect was inhibited by atropine.With regard to the cholinergic neural control of the intracranial arteries, it may have particular functional implications: (1) that these vessels do have a cholinergic parasympathetic innervation in contrast to most other vascular systems, for example, in the mesenterium, (2) that this cholinergic nerve supply was found to be about equally prominent as the adrenergic (sympathetic) innervation which, in some pial vessels, is even better developed than in the mesenteric arteries, and (3) that the adrenergic and cholinergic systems in the intracranial arteries may interact, even at the level of the neuro-muscular contacts, a complex situation which may be partly responsible for the previous difficulties in defining the autonomic neural influence on the brain circulation.Part of the findings were reported at Journées Internationales de Circulation Cérébrale, Toulouse, April 21–22, 1972.  相似文献   

13.
The metathoracic extensor tibiae muscle of the cricket Teleogryllus oceanicus is innervated by two excitatory axons; one of which leaves the metathoracic ganglion through nerve 5, the other through nerve 3. Axons in nerve 5 frequently regenerate to reinnervate the extensor tibiae if the nerve is sectioned in a late nymphal stage; functional reinnervation is rare if the nerve is sectioned in young adults. The muscle may become reinnervated by several axons regenerating through nerve 5, and individual muscle fibres may receive inputs from two regenerated axons. Axons regrowing through nerve 5 to a partially-denervated extensor tibiae preferentially innervate fibres in the central portion of the muscle, which is the normal innervation field of nerve 5. If the muscle is totally denervated by transection of both nerve 5 and nerve 3b, reinnervation is less specific and fibres throughout the muscle may be reinnervated by axons in either nerve. Reinnervation by regenerating axons is progressive. The proportion of muscles which are functionally reinnervated by regenerated axons increases with survival time as does the proportion of fibres within a muscle with reinnervation. The amplitude of excitatory junctional potentials and of muscle contraction evoked by regenerated axons both increase with survival time.  相似文献   

14.
In the chick, at the thoracic level, the dorsal branches of spinal nerves form at 4 days of incubation (stage 25) and reach the skin between 5 1/2 and 6 days (stages 28-29). At 6 days, the growing nervous peripheral processes ("axons") form large bundles (200-1,000 fibers). At 10 days, young Schwann cells divide the bundles into groups of axons. The perineurium and endoneurium differentiate between 10 and 14 days (but epineurium is formed after hatching). At 14 days of incubation, the adult pattern of cutaneous innervation is established. At this same stage, myelogenesis begins but develops mainly after hatching : 1% of the axons is myelinated at 16 days of incubation, 4% at hatching, 40% in 6-week old chickens and 60% in adults. Thus, less than 10% of myelinated axons of the adult are already myelinated at hatching. Two modes of myelogenesis were observed: 1) early myelination, starting in the embryo around axons measuring about 1 micrometer in diameter: 2) delayed myelination, occurring in the older chickens after an increase in axon diameter. These observations suggest that there is, in the development of chick skin innervation, a critical stage (14-15 days of incubation) apparently corresponding to the stabilization of cutaneous nerve supply.  相似文献   

15.
Previous studies of denervated and cultured muscle have shown that the expression of the neural cell adhesion molecule (N-CAM) in muscle is regulated by the muscle's state of innervation and that N-CAM might mediate some developmentally important nerve-muscle interactions. As a first step in learning whether N-CAM might regulate or be regulated by nerve-muscle interactions during normal development, we have used light and electron microscopic immunohistochemical methods to study its distribution in embryonic, perinatal, and adult rat muscle. In embryonic muscle, N-CAM is uniformly present on the surface of myotubes and in intramuscular nerves; N-CAM is also present on myoblasts, both in vivo and in cultures of embryonic muscle. N-CAM is lost from the nerves as myelination proceeds, and from myotubes as they mature. The loss of N-CAM from extrasynaptic portions of the myotube is a complex process, comprising a rapid rearrangement as secondary myotubes form, a phase of decline late in embryogenesis, a transient reappearance perinatally, and a more gradual disappearance during the first two postnatal weeks. Throughout embryonic and perinatal life, N-CAM is present at similar levels in synaptic and extrasynaptic regions of the myotube surface. However, N-CAM becomes concentrated in synaptic regions postnatally: it is present in postsynaptic and perisynaptic areas of the muscle fiber, both on the surface and intracellularly (in T-tubules), but undetectable in portions of muscle fibers distant from synapses. In addition, N-CAM is present on the surfaces of motor nerve terminals and of Schwann cells that cap nerve terminals, but absent from myelinated portions of motor axons and from myelinating Schwann cells. Thus, in the adult, N-CAM is present in synaptic but not extrasynaptic portions of all three cell types that comprise the neuromuscular junction. The times and places at which N-CAM appears are consistent with its playing several distinct roles in myogenesis, synaptogenesis, and synaptic maintenance, including alignment of secondary along primary myotubes, early interactions of axons with myotubes, and adhesion of Schwann cells to nerve terminals.  相似文献   

16.
Summary The sphincter muscle in the rat iris forms irregular strands in the stroma. Bundles of unmyelinated axons run among the muscle cells. After sympathetic denervation some axons degenerate. This should indicate that sympathetic and parasympathetic nerves are present in the same nerve net. The parasympathetic axons possess varicosities, that is, enlargements containing mitochondria and synaptic vesicles. These varicosities show a similar structural relationship to the muscle cells as do the varicosities of sympathetic nerves. No obvious ultrastructural difference is observed between the sympathetic and parasympathetic varicosities.This study has been supported by research grants (U267 and Y247) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

17.
Nerve fibers in the dental pulp of the lower molar teeth of the rat exert fluoride resistant acid phosphatase (FRAP) activity. FRAP-positive axons establish a three-dimensional nerve plexus within the pulp; the individual axons are very fine (calibre less than 1 micrometer) and only their varicosities measure 1...2 micrometer in diameter. Electron microscopically, FRAP-positive amyelinate axons containing lysosomes are partly embedded in Schwann cells. Removal of the cervical superior ganglion does not induce any alteration of FRAP-positive axons, while destruction of the Gasserian ganglion results in Wallerian degeneration. No FRAP-positive nerve fibers were found in rat incisors. Since, in the rat, only molar teeth are equipped with nociceptive terminals while continuously growing incisors lack pain fibers, it is concluded that FRAP-positive varicose axons in the dental pulp represent nerve endings of trigeminal primary nociceptive neurons.  相似文献   

18.
In puppies of various age (newborn, 2-week-old. 1- and 3-month-old) formation of smooth muscle and neural components in the femoral artery wall has been studied electron microscopically and histochemically. As demonstrate the electron microscopic data, the femoral artery wall is mainly formed by birth, nevertheless, structural components of its each tunic are at various stage of maturation and only by the 3d month the differentiation and specialization process of all cellular elements is fully completed. Owing to a combination of techniques used, it has been possible to follow the dynamics in formation of the innervation apparatus of the femoral artery. In the newborn animals the adrenergic apparatus of the femoral artery is presented mainly as thick fibers of a cable type; they form a plexus with loose loops at the periphery of the external tunic. Varicosities are scanty. By the 3d month there is a well developed network of the adrenergic fibers at the border of the middle and external vascular tunics. Some terminals penetrate into the muscular tunic. There is a great number of varicosities in the neural fiber axons. At the border of the middle and external tunics of the vessel, complex neuro-muscular interrelations are forming with an aim to bring functionally closer the main structural components of the wall. In the course of the early postnatal ontogenesis in dogs up to 3 months of age, in the femoral artery wall certain processes take place directed to ensure the neuroregulatory vasomotor properties of the vessel.  相似文献   

19.
The aminergic innervation of the foot of Lymnaea stagnalis was investigated using electron microscopy, immunocytochemistry, and HPLC. The foot was found to contain large amounts of serotonin and dopamine, though at lower concentrations than are found in nervous tissue. Serotonin containing tissue was concentrated in the ventral surface of the foot, under ciliated areas of the epidermis where it occurred in varicosities, with fine tracts joining these varicosities. Varicosities also occurred in deeper tissues, probably adjacent to mucus cells. Positive fluorescence for serotonin in axons was found in nerves innervating the foot, but few neuronal cell bodies containing serotonin were detected, indicating that most of the innervation was coming from the central ganglia. Axon varicosities were found using TEM on ciliated cells, mucus cells, and muscle cells as well as interaxonal junctions (possibly non-synaptic) within nerves. The neuronal varicosities contacting the ciliated cells and mucus cells contained mostly dense-cored vesicles of between 60 and 100 nm in diameter. Smaller, lucent vesicles also occurred in these terminals. The origin and significance of this innervation is discussed. It is suggested that both serotonin and dopamine may play a large role in controlling ciliary gliding by the foot.  相似文献   

20.
Fansa H  Keilhoff G  Wolf G  Schneider W 《Plastic and reconstructive surgery》2001,107(2):485-94; discussion 495-6
Bioengineering is considered to be the laboratory-based alternative to human autografts and allografts. It ought to provide "custom-made organs" cultured from patient's material. Venous grafts and acellular muscle grafts support axonal regeneration only to a certain extent because of the lack of viable Schwann cells in the graft. We created a biologic nerve graft in the rat sciatic nerve model by implanting cultured Schwann cells into veins and acellular gracilis muscles, respectively. Autologous nerve grafts and veins and acellular muscle grafts without Schwann cells served as controls. After 6 and 12 weeks, regeneration was assessed clinically, histologically, and morphometrically. The polymerase chain reaction analvsis showed that the implanted Schwann cells remained within all the grafts. The best regeneration was seen in the control; after 12 weeks the number of axons was increased significantly compared with the other grafts. A good regeneration was noted in the muscle-Schwann cell group, whereas regeneration in both of the venous grafts and the muscle grafts without Schwann cells was impaired. The muscle-Schwann cell graft showed a systematic and organized regeneration including a proper orientation of regenerated fibers. The venous grafts with Schwann cells showed less fibrous tissue and disorganization than the veins without Schwann cells, but failed to show an excellent regeneration. This might be attributed to the lack of endoneural-tube-like components serving as scaffold for the sprouting axon. Although the conventional nerve graft remains the gold standard, the implantation of Schwann cells into an acellular muscle provides a biologic graft with basal lamina tubes as pathways for regenerating axons and the positive effects of Schwann cells producing neurotrophic and neurotropic factors, and thus, supporting axonal regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号