首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83 was found to be composed of D-glucose and D-galactose in a molar ratio of 2:3. The primary structure of the polysaccharide was shown by sugar analysis, methylation analysis, FABMS, partial acid hydrolysis and nuclear magnetic resonance (NMR) spectroscopy to consist of a pentasaccharide repeating unit having the following structure: -->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6 )-alpha-D -Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

2.
The exopolysaccharide from the lactic acid bacterium Lactobacillus rhamnosus strain KL37C isolated from human intestinal flora was prepared by sonication of bacterial cell mass suspended in water followed by centrifugation and cold ethanol precipitation of the supernatant. The polysaccharide material was purified by gel permeation chromatography on an TSK HW-50 column and characterised using chemical and enzymatic methods. On the basis of sugar and methylation analysis and 1H, 13C, 1D and 2D NMR spectroscopy the exopolysaccharide was shown to be composed of the following pentasaccharide repeating unit:-->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

3.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

4.
The arabinogalactan of mycobacteria contains both monosaccharides in the furanose ring form, which are absent in mammals. We report here the first synthesis of the tetrasaccharide fragment alpha-D-Araf-(1-->5)-beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-D-Galf, conveniently derivatized for further elongation. The strategy relied on the use of suitably substituted D-galactono-1,4-lactones as precursors for the galactofuranose units. Reduction of lactone tetrasaccharide 9 with disiamylborane afforded the tetrasaccharide synthon 1. The tetrasaccharide contains the linker unit of the arabinan to the galactan.  相似文献   

5.
The structures of the Escherichia coli K93 and K53 capsular polysaccharides have been investigated by chemical and spectroscopic methods. The repeating unit of both polymers was found to be----3)-beta-D-Galf-(1----f)-beta-D-GlcAp-(1. The O-5 and O-6 atoms of D-galactose are acetylated in the repeating unit of the K93 polymer, but only O-2 is acetylated in the K53 polymer. The K93 polysaccharide is cross-reactive with the Neisseria meningitidis Group A capsular polysaccharide (of known structure). The K53 polysaccharide, although structurally similar to that from K93 organisms, does not cross-react with the Group A polymer.  相似文献   

6.
D-Galactan I is an O-antigenic polymer with the repeat unit structure [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->], that is found in the lipopolysaccharide of Klebsiella pneumoniae O1 and other gram-negative bacteria. A genetic locus containing six genes is responsible for the synthesis and assembly of D-galactan I via an ATP-binding cassette (ABC) transporter-dependent pathway. The galactosyltransferase activities that are required for the processive polymerization of D-galactan I were identified by using in vitro reactions. The activities were determined with endogenous lipid acceptors in membrane preparations from Escherichia coli K-12 expressing individual enzymes (or combinations of enzymes) or in membranes reconstituted with specific lipid acceptors. The D-galactan I polymer is built on a lipid acceptor, undecaprenyl pyrophosphoryl-GlcpNAc, a product of the WecA enzyme that participates in the biosynthesis of enterobacterial common antigen and O-antigenic polysaccharide (O-PS) biosynthesis pathways. This intermediate is directed into D-galactan I biosynthesis by the bifunctional wbbO gene product, which sequentially adds one Galp and one Galf residue from the corresponding UDP-sugars to form a lipid-linked trisaccharide. The two galactosyltransferase activities of WbbO are separable by limiting the UDP-Galf precursor. Galactosyltransferase activity in membranes reconstituted with exogenous lipid-linked trisaccharide acceptor and the known structure of D-galactan I indicate that WbbM catalyzes the subsequent transfer of a single Galp residue to form a lipid-linked tetrasaccharide. Chain extension of the D-galactan I polymer requires WbbM for Galp transferase, together with Galf transferase activity provided by WbbO. Comparison of the biosynthetic pathways for D-galactan I and the polymannose E. coli O9a antigen reveals some interesting features that may reflect a common theme in ABC transporter-dependent O-PS assembly systems.  相似文献   

7.
The structure of a capsular polysaccharide (CPS) from a clinical isolate of Bacteroides vulgatus was elucidated. B. vulgatus IMCJ 1204 was isolated from feces of a patient with Crohn's disease. CPS was prepared by phenol/water extraction of the bacterial cells followed by hydrophobic interaction chromatography and then gel filtration chromatography of the extract. The structure of CPS was determined by chemical analysis and NMR spectroscopy including DQF-COSY, TOCSY, ROESY, HSQC-TOCSY, HMQC and HMBC to be a polysaccharide composed of the following repeating unit: -->3)beta-D-Glcp(1-->6)[alpha-D-GalpNAc(1-->2)beta-D-Galp(1-->4)]beta-D-GlcpNAc(1-->3)alpha-D-Galp(1-->4)beta-D-Manp(1-->.  相似文献   

8.
The neutral exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B332 in skimmed milk was found to be composed of d-glucose, d-galactose, and l-rhamnose in a molar ratio of 1:2:2. Linkage analysis and 1D/2D NMR (1H and 13C) studies carried out on the native polysaccharide as well as on an oligosaccharide generated by a periodate oxidation protocol, showed the polysaccharide to consist of linear pentasaccharide repeating units with the following structure: -->3-alpha-D-Glcp-(1-->3)-alpha-D-Galp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->.  相似文献   

9.
The aqueous-phase lipopolysaccharide isolated from Pasteurella haemolytica serotype T10 cells by the phenol-water extraction method was found to be S-type lipopolysaccharide which possessed O-antigenic polysaccharide chains composed only of D-galactose residues. Structural analysis of the O-polysaccharide, using a combination of 1D and 2D 1H- and 13C-n.m.r. methods, led to the identification of the disaccharide repeating-unit as [----3)-alpha-D-Galp-(1----3)-beta-D-Galf-(1----]n. The serological cross-reactivity between P. haemolytica serotypes T4 and T10 can now be related to the structural similarity of the antigenic LPS O-polysaccharides.  相似文献   

10.
O-polysaccharides were isolated from the lipopolysaccharides of Escherichia coli O40 and Shigella dysenteriae type 9 and studied by chemical analyses along with (1)H and (13)C NMR spectroscopy. The following new structure of the O-polysaccharide of E. coli O40 was established: -->2)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1--> TheO-polysaccharide structure of S. dysenteriae type 9 established earlier was revised and found to be identical to the reported structure of the capsular polysaccharide of E. coli K47 and to differ from that of the E. coli O40 polysaccharide in the presence of a 3,4-linked pyruvic acid acetal having the (R)-configuration (RPyr): -->2)-beta-D-Galp3,4(RPyr)-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1-->  相似文献   

11.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

12.
The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.  相似文献   

13.
The mycobacterial arabinan is an elaborate component of the cell wall with multiple glycosyl linkages and no repeating units. In Mycobacterium spp., the Emb proteins (EmbA, EmbB, and EmbC) have been identified as putative mycobacterial arabinosyltransferases implicated in the biogenesis of the cell wall arabinan. Furthermore, it is now evident that the EmbA and EmbB proteins are involved in the assembly of the nonreducing terminal motif of arabinogalactan and EmbC is involved in transferring arabinose, perhaps in the early stage of arabinan synthesis in lipoarabinomannan. It has also been shown that the Emb proteins are a target of the antimycobacterial drug ethambutol (EMB). In the search for additional mycobacterial arabinosyltransferases in addition to the Emb proteins, we disrupted MSMEG_6386 (an orthologue of Rv3792 and a gene upstream of embC) in Mycobacterium smegmatis. Allelic exchange at the chromosomal MSMEG_6386 locus of M. smegmatis could only be achieved in the presence of a rescue plasmid carrying a functional copy of MSMEG_6386 or Rv3792, strongly suggesting that MSMEG_6386 is essential. An in vitro arabinosyltransferase assay using a membrane preparation from M. smegmatis expressing Rv3792 and synthetic beta-d-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-octyl and beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-octyl showed that Rv3792 gene product can transfer an arabinose residue to the C-5 position of the internal 6-linked galactose. The reactions were insensitive to EMB, and when alpha-d-Manp-(1-->6)-alpha-D-Manp-(1-->6)-alpha-D-Manp-octylthiomethyl was used as an acceptor, no product was formed. These observations indicate that transfer of the first arabinofuranose residue to galactan is essential for M. smegmatis viability.  相似文献   

14.
The structure of the extracellular polysaccharide (EPS) produced by the Rhizobium sp. B strain isolated from atypical nodules on alfalfa has been determined using a combination of chemical and physical techniques (methylation analysis, high pH-anion exchange chromatography (HPAEC), mass spectrometry and 1-D and 2-D NMR spectroscopy). As opposed to the EPS from other strains of Rhizobium, the EPS from the sp. B strain contains D-Glc together with L-Rha and 2-deoxy-D-arabino-hexuronic acid. It is a polymer of a repeating unit having the following structure: --> 4)-beta-D-Glcp-(1 --> 4)-alpha-L-Rhap -(1 --> 3)-beta-D-Glcp-(1 --> 4)-2-deoxy-beta-D-GlcpA-(1 -->. The polysaccharide also contains 0.6 O-acetyl groups per sugar which have not been located.  相似文献   

15.
Actinobacillus suis is an important bacterial pathogen of healthly pigs. An O-antigen (lipopolysaccharide; LPS) serotyping system is being developed to study the prevalence and distribution of representative isolates from both healthy and diseased pigs. In a previous study, we reported that A. suis serogroup O:1 strains express LPS with a (1-->6)-beta-D-glucan O-antigen chain polysaccharide that is similar in structure to a key cell-wall component in yeasts, such as Saccharomyces cerevisiae and Candida albicans. This study describes the O-antigen polysaccharide chemical structure of an O:2 serogroup strain, A. suis H91-0380, which possesses a tetrasaccharide repeating block with the structure: -->3)-beta-D-Galp-(1-->4)-[alpha-D-Galp-(1-->6)]-beta-D-Glcp-(1-->6)-beta-D-GlcpNAc-(1-->. Studies have shown that A. suis serogroup O:2 strains are associated with severely diseased animals; therefore, work on the synthesis of a glycoconjugate vaccine employing O:2 O-antigen polysaccharide to vaccinate pigs against A. suis serogroup O:2 strains is currently underway.  相似文献   

16.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

17.
Bacteroides vulgatus has been shown to be involved in the aggravation of colitis. Previously, we separated two potent virulence factors, capsular polysaccharide (CPS) and lipopolysaccharide (LPS), from a clinical isolate of B. vulgatus and characterized the structure of CPS. In this study, we elucidated the structures of O-antigen polysaccharide (OPS) and lipid A in the LPS. LPS was subjected to weak acid hydrolysis to produce the lipid A fraction and polysaccharide fraction. Lipid A was isolated by preparative TLC, and its structure determined by MS and NMR to be similar to that of Bacteroides fragilis except for the number of fatty acids. The polysaccharide fraction was subjected to gel-filtration chromatography to give an OPS-rich fraction. The structure of OPS was determined by chemical analysis and NMR spectroscopy to be a polysaccharide composed of the following repeating unit: [-->4)alpha-L-Rhap(1-->3)beta-D-Manp(1-->].  相似文献   

18.
Erwinia chrysanthemi are gram-negative bacterial phytopathogens causing soft rots in a number of plants. The structure of the extracellular polysaccharide (EPS) produced by E. chrysanthemi strain CU643, pathogenic to Philodendron, has been determined using a combination of chemical and physical techniques including methylation analysis, high- and low-pressure gel-filtration and anion-exchange chromatography, high-pH anion-exchange chromatography, partial acid hydrolysis, mass spectrometry, and 1- and 2-D NMR spectroscopy. In contrast to the structures of the EPS reported for other strains of E. chrysanthemi, the EPS from strain CU643 is a linear polysaccharide containing L-Rhap, D-Galp, and D-GlcAp in the ratio 4:1:1. Evidence is presented for the following hexasaccharide repeat unit: -->3)-beta-D-Galp-(1-->2)-alpha-L-Rhap-(1-->4)-beta-D-GlcAp- (1-->2)-alpha-L- Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->(1 ).  相似文献   

19.
Anionic polymers of the cell surface of a thermophilic streptomycete were investigated. The cell wall of Streptomyces thermoviolaceus subsp. thermoviolaceus VKM Ac-1857(T) was found to contain polymers with different structure: teichoic acid--1,3-poly(glycerol phosphate), disaccharide-1-phosphate polymer with repeating unit -6)-alpha-Galp-(1-->6)-alpha-GlcpNAc-P-, and polysaccharide without phosphate with repeating unit -->6)-alpha-GalpNAc-(1-->3)-beta-GalpNAc-(1-->. Disaccharide-1-phosphate and polysaccharide without phosphate have not been described earlier in prokaryotic cell walls.  相似文献   

20.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O77 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure:-->2)-alpha-D-Manp-(1-->2)-beta-D-Manp-(1-->3)-alpha-D-GlcpNAc-(1-->6)-alpha-D-Manp-(1-->  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号