首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
罗飞  柳长柏 《生命科学》2011,(3):283-285
钙网蛋白(calreticulin,CRT)是内质网中的一种多功能的分子伴侣,在协助蛋白质正确折叠和维持细胞Ca2+稳态(Ca2+信号)中发挥重要作用。近来的研究发现,钙网蛋白与神经系统病变包括阿尔茨海默氏病、帕金森病等有密切关系。  相似文献   

2.
吴红艳  王艳林 《生命科学》2011,(10):1009-1013
钙网蛋白是内质网分子伴侣,负责糖蛋白的折叠及维持细胞内Ca2+平衡。新近研究发现,某些凋亡刺激能诱导肿瘤细胞内的钙网蛋白快速转位到肿瘤细胞膜上,这种表面包被有大量钙网蛋白的肿瘤细胞,能被抗原呈递细胞有效识别和吞噬,由此激发抗同种肿瘤的特异性免疫杀伤效应,提示钙网蛋白在肿瘤免疫治疗中的潜在应用价值。对钙网蛋白在肿瘤免疫中的研究进展作一综述。  相似文献   

3.
钙网蛋白在水产动物中的应用研究   总被引:1,自引:0,他引:1  
钙网蛋白(calreticulin,CRT)不仅是一种主要存在于内质网和肌浆网的可溶性Ca2+结合蛋白,而且在温度、氧气等胁迫、病原以及寄生虫感染等情况下都对细胞起到重要的保护作用。首先解析钙网蛋白的类型、结构与分布,其次分析钙网蛋白在调节细胞内Ca2+平衡、参与机体免疫反应、影响细胞凋亡与血管形成等过程中的生理功能,最后分析钙网蛋白在鱼类、虾类及贝类中的研究。综合分析发现,钙网蛋白可能作为水产养殖中一种分子生物标志物进而反应水产动物的生理状态。  相似文献   

4.
钙网蛋白(calreticulin,CRT)是内质网中主要的Ca^2+结合分子伴侣,具有调控细胞Ca^2+稳态、蛋白质合成与修饰等作用,参与调节细胞凋亡、应激、心血管炎症反应等多种生理和病理生理过程。CRT属于心脏胚胎基因家族,通过调节心肌细胞肌原纤维形成、促进糖原分解、诱导肥大相关基因转录、调节心脏传导系统发育及心肌细胞凋亡等,在心脏发育及心肌肥大的发生、发展过程起重要作用,本文对CRT在心肌肥大中的作用及其信号转导途径予以综述。  相似文献   

5.
Ca2+对骨骼肌钙释放通道的调节   总被引:4,自引:0,他引:4  
Han HM  Yin CC 《生理科学进展》2006,37(2):132-135
钙释放通道(calcium release channel)又称Ryanodine受体(RyR),是细胞内质网膜上介导细胞内钙信号转导的离子通道。RyR1在骨骼肌细胞的兴奋-收缩偶联过程中起重要作用,是肌质网快速释放Ca^2+的通道。许多调节因素,如一些内源性蛋白(FK结合蛋白、钙调素、钙结合蛋白)和一些离子(Ca^2+、Mg^2+),通过不同的作用位点与RyR1结合,调控RyR1的结构与功能。研究表明,Ca^2+是众多调节RyR1因素中的核心成分和前提条件,其对RyR1的结构与功能有重要的调控作用。  相似文献   

6.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:13,自引:1,他引:12  
张和臣  尹伟伦  夏新莉 《植物学通报》2007,24(1):114-121,122
Ca^2+作为植物细胞中最重要的第二信使,参与植物对许多逆境信号的转导。在非生物逆境条件下,植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化,即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导,进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca^2+/CDPK、Ca^2+/CaM和Ca^2+/CBL3类钙信号系统,研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面,介绍钙信号转导分子机制的一些研究进展。  相似文献   

7.
钙网蛋白(calreticulin, CRT)是细胞内质网/肌浆网中主要的Ca2 结合蛋白,具有细胞内钙稳态调节、分子伴侣、抗原提呈等多种生物学功能.近来的研究发现, CRT在机体对凋亡细胞的有效识别、清除过程中起关键作用.  相似文献   

8.
网腔钙结合蛋白(calumenin)在内质网中具有分子伴侣作用,和心肌细胞内质网钙泵、兰尼碱受体共同调节内质网钙稳态。此外,Calumenin蛋白可以作为一种分泌蛋白,分泌至细胞外调控着血管钙化、血栓形成、细胞迁移和细胞凋亡的病理生理过程。本文对Calumenin蛋白和钙循环、血管钙化、血栓形成、细胞迁移以及细胞凋亡的关系作一综述,为疾病的临床诊治提供新的思路。  相似文献   

9.
Ca2+在植物生长发育和环境适应过程中发挥着中心调控作用,钙信号是植物生长发育和逆境响应的主要调控因子,钙结合蛋白是植物钙信号传导途径的最重要组分之一,然而植物钙结合蛋白在体内和体外与Ca2+结合的技术体系还有待完善和发展。为了系统总结植物钙结合蛋白的鉴定方法与技术,本文从定性结合、定量结合和结合方式等角度,综述了植物钙结合蛋白在体内和体外条件下与Ca2+结合的原理、方法、特点和应用前景,详细阐述了近年来的主要检测方法,并对其今后的发展趋势作了展望。本文将为植物钙结合蛋白的分离、功能鉴定和作用机制的研究提供技术支撑。  相似文献   

10.
酿酒酵母(SaccharomycescP增v括fdP)细胞可以通过ca2+/钙调磷酸酶信号途径来应对许多外界环境胁迫。在交配信息素、盐或者其他环境压力存在的条件下,钙离子会通过细胞质膜上的未鉴定的钙转运蛋白x和M或者由Cchl和Midl组成的钙通道进入细胞质。胞质内钙离子浓度的增加会激活细胞质里的钙调磷酸酶(calcineurin)。钙调磷酸酶的一个非常重要的作用是去磷酸化细胞质内的转录因子Crzl,造成它快速地从细胞质转移到细胞核,从而诱导包括液泡膜上钙泵蛋白基因PMCl以及内质网膜和高尔基体膜上钙泵蛋白基因尸脚,在内的目标基因的表达。这两个钙泵蛋白和液泡膜上的Ca2+/H+交换蛋白Vcxl一起作用,将细胞质内的钙离子浓度控制在50~200nmol/L的正常生理浓度内.使细胞能够正常生长。该综述主要论述了酿酒酵母细胞内Ca2+/钙调磷酸酶信号途径的最新研究进展。  相似文献   

11.
Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Calreticulin is a 46-kDa Ca2+-binding chaperone found across a diverse range of species. The protein is involved in the regulation of intracellular Ca2+ homeostasis and endoplasmic reticulum (ER) Ca2+ storage capacity. Calreticulin is also an important molecular chaperone involved in "quality control" within secretory pathways. The protein contains structurally and functionally unique domains with specialized functions. Studies on calreticulin knockout mice indicate that the protein is essential in early cardiac development. The protein also plays an important role in autoimmunity and cancer.  相似文献   

12.
Calreticulin is a ubiquitous endoplasmic reticulum Ca2+ binding chaperone. The protein has been implicated in a variety of diverse functions. Calreticulin is a lectin-like chaperone and, together with calnexin, it plays an important role in quality control during protein synthesis, folding, and posttranslational modification. Calreticulin binds Ca2+ and affects cellular Ca2+ homeostasis. The protein increases the Ca2+ storage capacity of the endoplasmic reticulum and modulates the function of endoplasmic reticulum Ca2+-ATPase. Calreticulin also plays a role in the control of cell adhesion and steroid-sensitive gene expression. Recently, the protein has been identified and characterized in higher plants but its precise role in plant cells awaits further investigation.  相似文献   

13.
Inflammation plays an important pathogenic role in a number of metabolic diseases such as obesity, type 2 diabetes, and atherosclerosis. The activation of inflammation in these diseases depends at least in part on the combined actions of TLR4 signaling and endoplasmic reticulum stress, which by acting in concert can boost the inflammatory response. Defining the mechanisms involved in this phenomenon may unveil potential targets for the treatment of metabolic/inflammatory diseases. Here we used LPS to induce endoplasmic reticulum stress in the human monocyte cell-line, THP-1. The unfolded protein response, produced after LPS, was dependent on CD14 activity but not on RNA-dependent protein kinase and could be inhibited by an exogenous chemical chaperone. The induction of the endoplasmic reticulum resident chaperones, GRP94 and GRP78, by LPS was of a much lower magnitude than the effect of LPS on TLR4 and MD-2 expression. In face of this apparent insufficiency of chaperone expression, we induced the expression of GRP94 and GRP78 by glucose deprivation. This approach completely reverted endoplasmic reticulum stress. The inhibition of either GRP94 or GRP78 with siRNA was sufficient to rescue the protective effect of glucose deprivation on LPS-induced endoplasmic reticulum stress. Thus, insufficient LPS-induced chaperone expression links TLR4 signaling to endoplasmic reticulum stress.  相似文献   

14.
Rigers Bakiu 《Biologia》2014,69(3):270-280
Calreticulin (CRT) is a low molecular weight protein present in vertebrates, invertebrates and higher plants. Its multiple functions have been demonstrated. It plays an important role as a chaperone and Ca2+ buffer inside sarcoplasmic/endoplasmic reticulum (SR/ER), and outside the ER in many physiological/pathological processes. Recently it has been observed that CRT over-expression or its absence is linked to various pathological conditions, such as malignant evolution and progression, and these facts really increased its study interests. Using an evolution approach CRT was further characterized. Several Bayesian phylogenetic analyses were performed using coding and amino acid sequences. CRT molecular evolution was investigated for the presence of negative or/and positive selection using HyPhy package. The results indicated that the purifying selection might have operated over the whole CRT primary structure. Although, an episodic diversifying selection was also found on the analyzed CRT sequences.  相似文献   

15.
番茄 calnexin 基因的克隆及胁迫表达分析   总被引:1,自引:0,他引:1  
Calnexin是内质网中重要的类凝集素分子伴侣,其主要作用是辅助糖基化蛋白的折叠和装配,调节内质网中的Ca2 稳态平衡和Ca2 信号传导过程。从番茄(Lycopersicon esculentum)的cDNA文库中克隆到calnexincDNA全序列,将其命名为Lecnx61.0,并以其3’端DNA片段为探针对番茄基因组进行Southern分析,结果表明Lecnx61.0在该基因组中仅有一个拷贝;Northern和W estern分析表明,Lecnx61.0的表达还受热激、冷害、盐害和内质网应激诱导剂衣霉素的诱导,但对干旱胁迫没有明显的反应。LeCNX 61.0蛋白对Ca2 亏缺胁迫的响应呈现组织特异性,但高浓度Ca2 并不影响各组织中LeCNX 61.0蛋白的含量,实验结果表明LeCNX 61.0蛋白可能在植物抵抗特定的环境胁迫中发挥作用。  相似文献   

16.
Since its initial discovery as a high affinity Ca2+-binding protein in the sarcoplasmic reticulum and endoplasmic reticulum (ER), calreticulin (CRT) has been documented to be a multifunctional protein in both animal and plant cells. This protein is well recognized as a Ca2+-binding molecular chaperone that facilitates the folding of newly synthesized glycoproteins and regulates the Ca2+ homeostasis in the ER lumen. However, functional relevance associated with its localization in other cellular compartments has also been reported. Recent studies suggest that both isoforms of plant CRTs (AtCRT1/2 and AtCRT3) are involved in regulating plant defense against biotrophic pathogens. Here we discuss the cellular functions of CRT and its connection to the emerging functions of AtCRTs in plant immunity.  相似文献   

17.
Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaper-one. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.  相似文献   

18.
19.
Overexpression of calreticulin sensitizes SERCA2a to oxidative stress   总被引:11,自引:0,他引:11  
Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.  相似文献   

20.
Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked β-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号