首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inhibition of vitamin K-dependent carboxylase and oxygenase by sulfhydryl reagents was compared. Formation of vitamin K epoxide and vitamin K-dependent carboxylation are both strongly (greater than 90%) inhibited by l mM p-hydroxy-mercuribenzoate, and this inhibition is reversed by dithiothreitol. Both activities are also effectively inhibited by N-ethylmaleimide (NEM). Preincubation with vitamin K hydroquinone prevents NEM inhibition of epoxide formation but not of carboxylation. These data argue that separate active sites are required to support vitamin K-dependent epoxide formation and carboxylation and that the binding site vitamin K oxygenase contains an active thiol group.  相似文献   

2.
The vitamin K dependent carboxylase of liver microsomes is involved in the posttranslational modification of certain serine protease zymogens which are critical components of the blood clotting cascade. During coupled carboxylation/oxygenation this carboxylase converts glutamate residues, dihydrovitamin K, CO2, and O2 to a gamma-carboxyglutamyl (Gla) residue, vitamin K (2R,3S)-epoxide, and H2O with a stoichiometry of 1:1 for all substrates and products. In this paper we investigate the role of molecular oxygen in the reaction by following the course of the oxygen atoms using 18O2. Two different mass spectroscopic techniques, electron ionization positive ion mass spectrometry and supercritical fluid chromatography-negative ion chemical ionization mass spectrometry, were used to quantitate the amount of 18O incorporation into the various oxygens of the vitamin K epoxide product. We found that 0.95 mol atoms of oxygen were incorporated into the epoxide oxygen, 0.05 mol atoms of oxygen were incorporated into the quinone oxygen of vitamin K epoxide, and the remaining ca. 1.0 mol atoms of oxygen were incorporated into H2O. No incorporation of oxygen into vitamin K epoxide from 50% H2(18)O was observed. Thus, the carboxylase operates as a dioxygenase 5% of the time during carboxylation/oxygenation. The relevance of these findings with respect to the nonenzymic "basicity enhancement" model proposed by Ham and Dowd [(1990) J. Am. Chem. Soc. 112, 1660-1661] is discussed.  相似文献   

3.
The formation of vitamin K epoxide and the vitamin K-dependent carboxylation of glutamic acid residues present in synthetic substrates and decarboxyprothrombin are both inhibited by superoxide dismutase. Catalase only inhibits the generation of vitamin K epoxide, suggesting that the carboxylation and epoxidation reactions are not inter-dependent.  相似文献   

4.
Vitamin K-dependent carboxylation of glutamic acid residues to γ-carboxyglutamic acid was demonstrated in proteins of lung microsomes. The carboxylation was 12% of that in liver microsomes per milligram of mierosomal protein. Carboxylation was very low with microsomes of untreated rats but increased with time up to 42 h after warfarin administration. Carboxylation was highest with microsomes from rats fed a vitamin K-deficient diet. This suggests that a protein(s) accumulates which can be carboxylated in vitro/J. Lung microsomes also catalyzed the vitamin K-dependent carboxylation of the peptide Phe-Leu-Glu-Glu-Leu. The peptide carboxylase activity was 9% of that obtained with liver microsomes. Vitamin K-dependent protein carboxylation required NADH or dithioerythritol, suggesting that vitamin K had to be reduced to the hydroquinone. Accordingly, vitamin K1 hydroquinone had carboxylating activity without added reducing agents. Menaquinone-3 was considerably more active than phylloquinone. The temperature optimum for carboxylation was around 27 °C.  相似文献   

5.
R G Bell 《Federation proceedings》1978,37(12):2599-2604
Vitamin K is primarily located in hepatic microsomes, where the vitamin K-dependent carboxylation in prothrombin synthesis occurs. Recent evidence supports the idea that the carboxylation is linked to the metabolism of the vitamin--specifically the cyclic interconversion of vitamin K and vitamin K epoxide. The primary site of action of coumarin and indandione anticoagulants appears to be an inhibition of the epoxide-to-vitamin K conversion in this cycle. There is a correlation between the inhibition of prothrombin synthesis and the regeneration of vitamin K from the epoxide by anticoagulants. In hamsters and warfarin-resistant rats prothrombin synthesis and the epoxide-K conversion are less sensitive to warfarin than in the normal rat. The epoxide-K conversion is impaired in resistant rats, which may explain their high vitamin K requirement. There is also a correlation between vitamin K epoxidation and vitamin K-dependent carboxylation, but the apparent link may be because vitamin K hydroquinone is an intermediate in the formation of the epoxide and also the active form in carboxylation. The vitamin K-epoxide cycle is found in extrahepatic tissues such as kidney, spleen, and lung and is inhibited by warfarin.  相似文献   

6.
Metabolism of vitamin K1 in rat liver mitochondria has been studied with succinate as the source of reducing equivalents. A metabolite was isolated that comigrated with vitamin K1 epoxide using four different chromatographic systems. The purified metabolite had an ultraviolet spectrum (200-330 nm) that was identical to that of synthetic vitamin K1 epoxide. The mass spectrum of the purified metabolite was identical to that of synthetic vitamin K1 epoxide. A comparison of production of vitamin K1 epoxide by mitochondrial and microsomal preparations indicates that the mitochondrial production of vitamin K1 epoxide was about 50% of that of the microsomes. Since the mitochondrial preparation was found to have only 3.4% of the glucose-6-phosphatase activity of the microsomal preparation, it can be concluded that the vitamin K1 epoxide isolated from the mitochondrial incubations was due primarily to mitochondrial synthesis. Epoxidation of vitamin K1 in mitochondria suggests that mitochondria might be sites for vitamin K-dependent carboxylation of protein(s).  相似文献   

7.
T L Carlisle  J W Suttie 《Biochemistry》1980,19(6):1161-1167
Vitamin K dependent carboxylation of an exogenous peptide substrate and endogenous protein substrates, vitamin K epoxidation, and reduction of vitamin K epoxide were measured in subcellular fractions from rat liver. The rough microsomal fraction was highly enriched in all four activities; lower levels were found in smooth microsomes. Mitochondria, nuclei, and cytosol had negligible activities. The addition of 0.2% Triton X-100 to intact microsomes resulted in a 10-20-fold stimulation in carboxylation of a peptide substrate. This marked latency suggests that the active site of the carboxylase may be accessible only from the lumen of the microsomal membrane. A lumen-facing orientation of the carboxylase was also supported by its inaccessibility to trypsin in intact microsomes contrasted with marked inhibition by trypsin in detergent-permeabilized microsomes. Vitamin K epoxidase and epoxide reductase activities were also inhibited by trypsin much more effectively in permeabilized than in intact microsomes, although some degree of exposure at the cytosolic surface was also indicated. These data suggest that carboxylation is an early event in prothrombin synthesis occurring primarily on the lumen side of the rough endoplasmic reticulum membrane. The location of the vitamin K epoxidation-reduction cycle enzymes is consistent with their possible role in the carboxylation reaction.  相似文献   

8.
The vitamin K-dependent enzymatic carboxylation of glutamyl residues in blood protein precursors and in synthetic peptides is inhibited in vitro by transition metal complexes. Some authors suggested it is a result of metal ions interaction with intermediary oxygenated species. Using an oxygraph we have observed increases in the rate of oxygen utilization in the carboxylating system containing reduced vitamin K after addition of some transition metal ions and complexes. Kinetic studies indicate that, although oxygen utilization is increased by the addition of Cu2+, Fe3+, and hematin, the initial rate of carboxylation is not affected. The rate of carboxylation rapidly decreases at oxygen concentrations below 50 microM and reaches zero when oxygen is depleted. UV spectroscopy revealed simultaneous acceleration of the conversion of vitamin K hydroquinone into the parent quinone. The magnitude of these effects, as well as carboxylation inhibition, depends on the oxidation potential of the complexed ion and its lipophilicity. Addition of stable Mn parallel ion, which has no inhibitory effect on carboxylation, does not increase the rate of oxygen utilization nor the hydroquinone oxidation. The results suggest that inhibition of carboxylation by transition metals is mainly due to depletion of the necessary components (oxygen, vitamin K hydroquinone) of the carboxylating system rather than quenching of activated, oxygen-containing intermediates.  相似文献   

9.
Carboxylation of vitamin K-dependent (VKD) proteins is required for their activity and depends on reduced vitamin K generated by vitamin K oxidoreductase (VKOR) and a redox protein that regenerates VKOR activity. VKD protein carboxylation is inefficient in mammalian cells, and to understand why carboxylation becomes saturated, we developed an approach that directly measures the extent of intracellular VKD protein carboxylation. Analysis of factor IX (fIX)-expressing BHK cells indicated that slow egress of fIX from the endoplasmic reticulum and preferential secretion of the carboxylated form contribute to secreted fIX being more fully carboxylated. The analysis also revealed the first reported in vivo VKD protein turnover, which was 14-fold faster than that which occurs in vitro, suggesting facilitation of this process in vivo. r-VKORC1 expression increased the rate of fIX carboxylation and the extent of secreted carboxylated fIX approximately 2-fold, which shows that carboxylation is the rate-limiting step in fIX turnover and which was surprising because turnover in vitro is limited by release of carboxylated fIX. Interestingly, the increases were significantly smaller than the amount of VKOR overexpression (15-fold). However, when cell extracts were tested in single-turnover experiments in vitro, where redox protein is functionally substituted with dithiothreitol, VKOR overexpression increased the fIX carboxylation rate 14-fold, showing r-VKORC1 is functional for supporting fIX carboxylation. These data indicate that the effect of VKOR overexpression is limited in vivo, possibly because a carboxylation component like the redox protein becomes saturated or because another step is now rate-limiting. The studies illustrate the complexity of carboxylation and potential importance of component stoichiometry to overall efficiency.  相似文献   

10.
Two procedures have been developed for the solubilization of vitamin K epoxide reductase from rat liver microsomal membranes using the detergent Deriphat 160 at pH 10.8. The methods are applicable to both normal and Warfarin-resistant-strain rat liver microsomes and yield material suitable for further purification. The preparations retain dithiothreitol-dependent vitamin K quinone reductase activity as well as vitamin K epoxide reductase and are free of vitamin K-dependent carboxylase and epoxidase activities. Optimal epoxide reductase activity is obtained at 0.1 M KCl and pH 9 in the presence of sodium cholate. Artifactual formation of vitamin K metabolites was eliminated through the use of mercuric chloride to remove excess dithiothreitol prior to extraction and metabolite assay. Using the solubilized enzyme, valid initial velocities were measured, and reproducible kinetic data was obtained. The substrate initial velocity patterns were determined and are consistent with a ping-pong kinetic mechanism. The kinetic parameters obtained are a function of the cholate concentration, but do not vary drastically from those obtained using intact microsomal membranes. At 0.8% cholate, the enzymes solubilized from normal Warfarin-sensitive- and Warfarin-resistant-strain rat livers exhibit respective values of Vmax = 3 and 0.75 nmol/min/g liver; Km for vitamin K epoxide = 9 and 4 microM; and Km for dithiothreitol of 0.6 and 0.16 mM.  相似文献   

11.
In this in vivo study, the time-dependent effect of oral sodium warfarin was studied in male rats synchronized under a 12-hr light-dark cycle (light 0600-1800). Groups of 5 animals received an oral dose of 500 micrograms/kg of warfarin or saline at 0600 or 1800 and 1 mg/kg of vitamin K 8 hr later and the rats were sacrificed 240 min after vitamin K administration. The activities of the vitamin K reductase and vitamin K epoxide reductase were measured indirectly by determining the content of vitamin K1 and vitamin K epoxide reductase in the plasma and liver. The data obtained in control rats indicated that vitamin K and vitamin K 2,3 epoxide concentrations in plasma and liver were higher (P less than 0.05) at 1800 than at 0600. Warfarin had a greater (P less than 0.05) inhibitory effect on the vitamin K and vitamin K-epoxide reductases at 0600 compared to 1800; plasma levels of S- and R-warfarin did not vary with time of administration. The findings suggest that the activity of both reductases under control conditions, and the warfarin-induced inhibition of these enzymes varied depending on the time of drug administration.  相似文献   

12.
《Chronobiology international》2013,30(5-6):403-411
In this in vivo study, the time-dependent effect of oral sodium warfarin was studied in male rats synchronized under a 12-hr light-dark cycle (light 0600–1800). Groups of 5 animals received an oral dose of 500 Mg/kg of warfarin or saline at 0600 or 1800 and 1 mg/kg of vitamin K 8 hr later and the rats were sacrificed 240 min after vitamin K administration. The activities of the vitamin K reductase and vitamin K epoxide reductase were measured indirectly by determining the content of vitamin K, and vitamin K epoxide reductase in the plasma and liver. The data obtained in control rats indicated that vitamin K and vitamin K 2,3 epoxide concentrations in plasma and liver were higher (P < 0.05) at 1800 than at 0600. Warfarin had a greater (P < 0.05) inhibitory effect on the vitamin K and vitamin K-epoxide reductases at 0600 compared to 1800; plasma levels of S- and R-warfarin did not vary with time of administration. The findings suggest that the activity of both reductases under control conditions, and the warfarin-induced inhibition of these enzymes varied depending on the time of drug administration.  相似文献   

13.
We have evaluated a boy who had excessive bleeding and bruising from birth and showed markedly prolonged prothrombin times, partially correctable by oral vitamin K administration. Additional laboratory studies demonstrated decreased activities of plasma factors II, VII, IX, and X; near normal levels of immunologically detected and calcium binding-independent prothrombin; undercarboxylation of prothrombin; excess circulating vitamin K epoxide; decreased excretion of carboxylated glutamic acid residues; and abnormal circulating osteocalcin. These results all are consistent with effects resulting from decreased posttranslational carboxylation secondary to an inborn deficiency of vitamin K epoxide reductase. This individual also had nasal hypoplasia, distal digital hypoplasia, and epiphyseal stippling on infant radiographs, all of which are virtually identical to features seen secondary to first-trimester exposure to coumarin derivatives. Therefore, by inference, the warfarin embryopathy is probably secondary to warfarin's primary pharmacologic effect (interference with vitamin K-dependent posttranslational carboxylation of glutamyl residues of various proteins) and may result from undercarboxylation of osteocalcin or other vitamin K-dependent bone proteins.  相似文献   

14.
Gamma-carboxyglutamic acid, formed during the post-translational vitamin K-dependent carboxylation of glutamic acid residues in polypeptides has been identified not only in coagulation factors II (prothrombin),, VII, IX and X [1--4], but also in several other plasma proteins [3,5,6] and in protein of bone [7,8] and kidney [9]. In rat liver, carboxylation is mediated through an enzyme system located in the microsomal membrane [10]. The enzyme system requires CO2, O2 and the reduced (hydroquinone) form of the vitamin, as well as a suitable substrate [10,11]. Rat liver microsomes also convert vitamin K1 (phylloquinone) to its stable 2,3-epoxide [12]. Several studies suggest a link between carboxylation and the formation of the epoxide [12--14]. In one of these [14], a survey of rat tissues for vitamin K1 epoxidation revealed that, in addition to liver, this activity was also possessed by kidney, bone, spleen and placenta. In preliminary experiments, vitamin K-dependent carboxylating systems have been found in rat and chick kidney [9], in chick bone [15] and in rat spleen and placenta (unpublished observations). In this communication, we describe some of the basic characteristics of the vitamin K-dependent carboxylating system as found in human placental microsomes.  相似文献   

15.
In contrast to other fat-soluble vitamins, dietary vitamin K is rapidly lost to the body resulting in comparatively low tissue stores. Deficiency is kept at bay by the ubiquity of vitamin K in the diet, synthesis by gut microflora in some species, and relatively low vitamin K cofactor requirements for γ-glutamyl carboxylation. However, as shown by fatal neonatal bleeding in mice that lack vitamin K epoxide reductase (VKOR), the low requirements are dependent on the ability of animals to regenerate vitamin K from its epoxide metabolite via the vitamin K cycle. The identification of the genes encoding VKOR and its paralog VKOR-like 1 (VKORL1) has accelerated understanding of the enzymology of this salvage pathway. In parallel, a novel human enzyme that participates in the cellular conversion of phylloquinone to menaquinone (MK)-4 was identified as UbiA prenyltransferase-containing domain 1 (UBIAD1). Recent studies suggest that side-chain cleavage of oral phylloquinone occurs in the intestine, and that menadione is a circulating precursor of tissue MK-4. The mechanisms and functions of vitamin K recycling and MK-4 synthesis have dominated advances made in vitamin K biochemistry over the last five years and, after a brief overview of general metabolism, are the main focuses of this review.  相似文献   

16.
Rat liver microsomes contain a triton X-100 solubilizable vitamin K-dependent carboxylase activity that converts specific glutamyl residues of precursor proteins to γ-carboxyglutamyl residues. This activity has been studied utilizing synthetic peptides as substrates for the enzyme. When compared to the carboxylation of the endogenous microsomal precursors, the peptide carboxylase activity is more sensitive to the action of various inhibitors, and requires a higher concentration of vitamin K for maximal activity. The apparent Km for the peptide Phe-Leu-Glu-Glu-Leu was found to be 4 mM. Substrate specificity depends on residues adjacent to the carboxylated Glu residues and macromolecular recognition sites.  相似文献   

17.
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate. Carboxylation accounts for 3% of the reaction observed with (Z)-F-PEP, resulting in the formation of (R)-3-fluorooxalacetate, and for 86% of the reaction of (E)-F-PEP forming (S)-3-fluorooxalacetate. Carboxylation of F-PEP occurs on the 2-re face, which corresponds to the 2-si face of PEP. The partitioning of F-PEP between carboxylation and hydrolysis is insensitive to pH but varies with metal ion. Use of 18O-labeled bicarbonate produces phosphate that is multiply labeled with 18O; in addition, 18O is also incorporated into residual (Z)- and (E)-F-PEP. The 13(V/K) isotope effect on the carboxylation of F-PEP catalyzed by PEP carboxylase at pH 8.0, 25 degrees C, is 1.049 +/- 0.003 for (Z)-F-PEP and 1.009 +/- 0.006 for (E)-F-PEP. These results are consistent with a mechanism in which carboxylation of PEP occurs via attack of the enolate of pyruvate on CO2 rather than carboxy phosphate. In this mechanism phosphorylation of bicarbonate to give carboxy phosphate and decarboxylation of the latter are reversible steps. An irreversible step, however, precedes partitioning between carboxylation to give oxalacetate and release of CO2, which results in hydrolysis of PEP.  相似文献   

18.
A biphasic profile has been found for the rat hepatic microsomal formation of carbamazepine 10, 11 -epoxide from varying concentrations of carbamazepine (CBZ). The two optima for epoxide formation appeared at substrate concentrations of about 0.3 mM and 1.0 mM CBZ, respectively, with a nadir occuring at 0.4 – 0.6 mM CBZ. The biphasic nature of the velocity-substrate profile was not due to metabolism or disappearance of the epoxide. Pretreatment of rats with phenobarbital or CBZ produced an increase in the epoxide formation at both low and high CBZ concentrations, whereas phenytoin (DPH) pretreatment increased epoxide only at low CBZ concentrations. 3-Methylcholanthrene treatment did not increase epoxide formation at either low or high CBZ concentrations. High and low affinity processes for epoxide formation developed in parallel in young rats. DPH added invitro inhibited only the epoxide formation at high CBZ concentrations. This inhibitory effect increased with age of the rats. These findings indicate that CBZ 10, 11 -epoxide formation in rat liver microsomes proceeds by two metabolic pathways distinguished by substrate affinity and inhibition. Analysis of data from previous clinical studies reveals a biphasic pattern for plasma levels of CBZ, and its 10, 11 -epoxide.  相似文献   

19.
The rat liver microsomal vitamin K-dependent carboxylase catalyzes the carboxylation of peptide-bound glutamyl residues to gamma-carboxyglutamyl (Gla) residues with the concomitant formation of vitamin K 2,3-epoxide (KO). These studies have demonstrated that the half-reaction, formation of KO, occurs in the absence of carboxylation at low glutamyl substrate concentration but that the ratio of KO/Gla approaches unity as the glutamyl substrate concentration is increased. Utilization of the carboxylase substrate Phe-Leu-[gamma-3H] Glu-Glu-Leu has demonstrated that the ratios of KO/gamma-C-H bonds cleaved and Gla/gamma-C-H bonds cleaved are equivalent at high substrate concentrations and that these ratios approach unity. At low substrate concentrations, KO formation occurs at a higher rate than gamma-H bond cleavage. These data are consistent with a mechanism involving the formation of an oxygenated intermediate from vitamin KH2 and O2 that is converted to KO during hydrogen abstraction from the gamma-position of the Glu substrate. In the absence of a Glu substrate, the intermediate is converted to KO by a mechanism not coupled to glutamyl activation.  相似文献   

20.
Activity of the rat liver microsomal vitamin K-dependent carboxylase has been studied at various concentrations of detergent. The activity which could be solubilized by 0.25% Triton X-100 was low but could be greatly increased if vitamin K-deficient rats were given vitamin K a few minutes before they were killed. At higher concentrations of Triton, more activity was solubilized and this effect was not seen. In vitro carboxylation of endogenous microsomal proteins was decreased by 80-90% if vitamin K was administered 1 min before rats were killed, but the amount of assayable prothrombin precursor was decreased by only 20%. Decarboxylated vitamin K-dependent rat plasma proteins were not substrates for the carboxylase and did not influence peptide carboxylase activity significantly. Purified microsomal prothrombin precursors did, however, stimulate carboxylation of peptide substrate and were used as a substrate for the carboxylase in a preparation from precursor depleted vitamin K-deficient rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号