首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Anionic lipids are key components in the cell membranes. Many cell-regulatory and signaling mechanisms depend upon a complicated interplay between them and membrane-bound proteins. Phospholipid bilayers are commonly used as model systems in experimental or theoretical studies to gain insight into the structure and dynamics of biological membranes. We report here 200-ns-long MD simulations of pure (DMPC and DMPG) and mixed equimolar (DMPC/DMPG, DMPC/DMPS, and DMPC/DMPA) bilayers that each contain 256 lipids. The intra- and intermolecular interaction patterns in pure and mixed bilayers are analyzed and compared. The effect of monovalent ions (Na+) on the formation of salt-bridges is investigated. In particular, the number of Na+-mediated clusters in the presence of DMPS is higher than with DMPG and DMPA. We observe a preferential clustering of DMPS (and to some extent DMPA) lipids together rather than with DMPC molecules, which can explain the phase separation observed experimentally for DMPC/DMPS and DMPC/DMPA bilayers.  相似文献   

3.
The binding of calcium to headgroup deuterated 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) was investigated by using deuterium magnetic resonance in pure POPS membranes and in mixed 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS 5:1 (m:m) bilayers. Addition of CaCl2 to pure POPS bilayers led to two component spectra attributed, respectively, to liquid-crystallin POPS (less than 15 kHz) and POPS molecules in the calcium-induced dehydrated phase (cochleate) (approximately 120 kHz). The liquid-crystalline component has nearly disappeared at a Ca2+ to POPS ratio of 0.5, indicating that, under such conditions, most of the POPS molecules are in the precipitated cochleate phase. After dilution of the POPS molecules in zwitterionic POPC membranes (POPC/POPS 5:1 m:m), single component spectra characteristic of POPS in the liquid-crystalline state were observed in the presence of Molar concentrations of calcium ions (Ca2+ to POPS ratio greater than 50), showing that the amount of dehydrated cochleate PS-Ca2+ phase, if any, was low (less than 5%) under such conditions. Deuterium NMR data obtained in the 15-50 degrees C temperature range with the mixed PC/PS membranes, either in the absence or the presence of Ca2+ ions, indicate that the serine headgroup undergoes a temperature-induced conformational change, independent of the presence of Ca2+. This is discussed in relation to other headgroup perturbations such as that observed upon change of the membrane surface charge density.  相似文献   

4.
I Graham  J Gagné  J R Silvius 《Biochemistry》1985,24(25):7123-7131
The effects of calcium on the mixing of synthetic diacylphosphatidylcholines (PC's) and diacylphosphatidylethanolamines (PE's) with the corresponding phosphatidic acids (PA's) have been examined by high-sensitivity differential scanning calorimetry and by measurements of the fluorescence of labeled PA or PC species in PA-PC bilayers. Calorimetrically derived phase diagrams for dimyristoyl- and dielaidoyl-substituted PA-PC and PA-PE mixtures indicate that these species are readily miscible in the absence of calcium but phase-separate very extensively in the presence of high levels of calcium (30 mM). The limiting solubilities of PA (Ca2+) in liquid-crystalline PC or PE bilayers are less than or equal to 10 and approximately 5 mol %, respectively, while approximately 20 mol % of PC or PE can be introduced into the "cochleate" phase of PA (Ca2+) before a distinct PC-rich (or PE-rich) phase appears. The kinetics of calcium-induced lateral phase separations were examined for dioleoyl- and dielaidoyl-substituted PA-PC unilamellar vesicles labeled with fluorescent (C12-NBD-acyl) PA or PC, whose fluorescence becomes partially quenched upon phase separation. Our results indicate that, for the PA-PC system, lateral phase separation is very rapid (approximately less than 1 s) after calcium addition and develops partially (possibly in only one face of the bilayer) when calcium is present only on one side of the bilayer. Moreover, phase separations can develop at a rate faster than that of vesicle diffusion when calcium is added to dilute suspensions of vesicles, suggesting that interbilayer contacts are not essential to promote phase separations.  相似文献   

5.
C E Dempsey  A Watts 《Biochemistry》1987,26(18):5803-5811
The interaction of bee venom melittin with dimyristolphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A2 in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35 degrees C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A2 activity, and at 3-5 mol% relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuterated dipalmitoylphosphatidylcholine (DPPC) mixtures [Dufourc, E. J., Smith, I. C. P., & Dufourcq, J. (1986) Biochemistry 25, 6448-6455]. LysoPC at concentrations of 20 mol% or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The vibrational Raman spectra of both pure 1-alpha-dimyristoylphosphatidic acid (DMPA) liposomes and DMPA multilayers reconstituted with ferricytochrome c at pH 7 and pH 4, with either sodium or calcium as the cation, are reported as a function of temperature. Multilayers composed of a 1:1 mol ratio DMPA and dimyristoylphosphatidylcholine with perdeuterated acyl chains (DMPC-d54) have also been reconstituted with approximately 10(-4) M ferricytochrome c for Raman spectroscopic observation. Total integrated band intensities and relative peak height intensity ratios, two spectral Raman scattering parameters used to characterize bilayer properties, are sensitive to the presence of both ferricytochrome c and the cation in the reconstituted liposomes. Temperature profiles, derived from the various Raman intensity parameters for the 3,100-2,800 cm-1 lipid acyl chain C-H stretching mode region specifically reflect bilayer perturbations due to the interactions of ferricytochrome c. At pH 4 the calcium DMPA multilamellar gel to liquid crystalline phase transition temperatures Tm, defined by either the C-H stretching mode I2850/I2880 and I2935/I2880 peak height intensity ratios, are 58.5 +/- 0.5 degrees C and 60.0 +/- 0.3 degrees C, respectively. This difference in Tm's resolves the phase transition process into first an expansion of the lipid lattice and then a melting of the lipid acyl chains. At pH 7 the calcium DMPA liposomes show no distinct phase transition characteristics below 75 degrees C. For sodium DMPA liposomes reconstituted with ferricytochrome c at either pH 4.0 or pH 7.0, spontaneous Raman spectra show altered lipid structures at temperatures above 40 degrees C. Resonance Raman spectra indicate that ferricytochrome c reconstituted in either calcium or sodium DMPA liposomes changes irreversibly above Tm. For either the binary lipid or ternary lipid-protein systems reconstituted with DMPC-d54, linewidth parameters of the DMPC-d54 acyl chain CD2 symmetric stretching modes at 2,103 cm-1 provide a sensitive measure of the conformational and dynamic properties of the perdeuterated lipid component, while the 3,000 cm-1 C-H spectral region reflects the bilayer characteristics of the DMPA species in the complex. Although calcium clearly induces a lateral phase separation in the DMPA/DMPC-d54 system at pH 7.5 (Kouaouci, R., J.R. Silvius, I. Grah, and M. Pezolet. 1985. Biochemistry. 24:7132-7140), no distinct lateral segregation of the lipid components is observed in the mixed DMPA/DMPC-d54 lipid system in the presence of either ferricytochrome c or the sodium and calcium cations at pH 4.0.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The structural and dynamic properties of complexes of dimyristoylphosphatidic acid (DMPA) and calcium ions have been characterized by 2H NMR, Raman, and infrared spectroscopies and small-angle X-ray diffraction. All techniques used show that these complexes do not undergo a cooperative thermotropic phase transition. Small-angle X-ray diffraction unambiguously demonstrates that the structure of the lipid molecules of the DMPA/Ca2+ complexes remains lamellar even at a temperature as high as 85 degrees C. Raman results indicate that within this temperature range, only a few trans-gauche isomerizations of the C-C bonds of the phospholipid acyl chains arise in this system. The 2H NMR spectra indicate that the DMPA chains are highly motionally restricted up to 65 degrees C and that higher temperatures might activate some low-frequency overall motions of entire lamellar domains. Small-angle X-ray scattering and 2H NMR spectroscopy of 2H2O also show that the interaction of calcium with DMPA promotes an important dehydration of the lipid assembly, even though the latter technique clearly demonstrates that some water molecules remain strongly bond in the DMPA/Ca2+ complexes. The carbonyl stretching mode region of the infrared spectrum of DMPA/Ca2+ complexes suggests that these water molecules are trapped near the interfacial region of the lipid membrane and are hydrogen bonded with the carbonyl groups of the lipid. Finally, comparison of the phosphate stretching mode region of the infrared spectra of complexes of DMPA with calcium ions with those of model compounds provides strong evidence that calcium ions bind to both charges of the phosphate group of DMPA and form bridges between adjacent bilayers.  相似文献   

8.
We have measured the phase behavior of mixed dipentadecanoylphosphatidylglycerol (DC15PG)/dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUV) in the presence of saturating (greater than 98% occupancy of binding sites) concentrations of bovine prothrombin fragment 1 and 5 mM Ca2+. Binding of fragment 1 in the presence of Ca2+ was verified by an increase in 90 degrees light scattering. Only in the cases of DC15PG/DMPC SUV below their phase transition and of pure DMPC SUV were such light scattering measurements not reversible upon addition of ethylenediaminetetraacetic acid to complex Ca2+. Phase-behavior changes of DC15PG/DMPC SUV as monitored by diphenylhexatriene fluorescence anisotropy occurred in concert with the binding of fragment 1. The major effects of peptide binding on SUV phase behavior were to raise the phase-transition temperature by 2-15 degrees C, depending on vesicle composition, and, in general, to make the phase diagram for these small vesicles closely resemble that of large vesicles. No evidence was obtained for the existence of lateral membrane domains with distinct compositions induced by the binding of prothrombin fragment 1 plus Ca2+. Surprisingly, fragment 1 without Ca2+ also altered the phase behavior of DC15PG/DMPC SUV. Most striking was the effect of fragment 1 (with or without Ca2+) on DMPC SUV phase behavior. Freeze-fracture electron microscopy demonstrated that pure DMPC vesicles were induced to fuse in the presence of fragment 1, while vesicles containing DC15PG remained intact. The rate of DMPC SUV fusion (followed by 90 degrees light scattering) increased with increasing fragment 1 concentration but was not saturable up to 40 microM fragment 1, suggesting a weak, nonspecific interaction between fragment 1 and the neutral phospholipid vesicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
G Laroche  D Carrier  M Pézolet 《Biochemistry》1988,27(17):6220-6228
The effect of polylysine (PLL) on dimyristoylphosphatidic acid (DMPA), on dimyristoyl-phosphatidylcholine (DMPC), and on mixtures of these lipids was investigated by Raman spectroscopy. These results show that long polylysine (Mr approximately 200,000) increases the stability of the acyl chain matrix of DMPA to form a more closely packed structure with a stoichiometry of one lysine residue per PA molecule. On the other hand, short PLL (Mr 4000) destabilizes the PA bilayer, and the complex formed undergoes a gel to liquid-crystalline transition at a lower temperature than of the pure lipid. For both cases, we have observed that bound polylysine adopts a beta-sheet conformation as opposed to the alpha-helical structure previously found for dipalmitoylphosphatidylglycerol/long PLL complexes [Carrier, D., & Pézolet, M. (1984) Biophys. J. 46, 497-506]. The difference in the thermal behavior of complexes of DMPA with long and short polylysines is believed to be associated with the fact that in the complex the long polypeptide adopts the beta-sheet conformation over the whole range of temperatures investigated while the short one undergoes a change of conformation from beta-sheet of random coil upon heating. Therefore, the conformation of the lipid-bound polypeptides depends on the nature of the polar head group of the lipid, not only on its net charge, and it affects considerably the thermotropism of the lipid. On the other hand, both long and short polylysines show no affinity for phosphatidylcholine since the temperature profiles of DMPC and of DMPC/PLL complexes exhibit exactly the same behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The interactions of the antibiotic polymixin B, a polycationic cyclic polypeptide containing a branched acyl side chain, with dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidic acid (DMPA) bilayers were investigated by Raman spectroscopy for a wide range of lipid/polypeptide mole fractions. Temperature profiles, constructed from peak height intensity ratios derived from the lipid methylene C-H stretching and acyl chain C-C stretching mode regions, reflected changes originating from lateral chain packing effects and intrachain trans / gauche rotamer formation, respectively. For DMPC/polymyxin B bilayers the temperature dependent curves indicate a broadening of the gel-liquid crystalline phase transition accompanied by an approx. 3 C deg. increase in the phase transition temperature from 22.8°C for the pure bilayer to 26°C for the polypeptide complex. For a 10:1 lipid/polypeptide mole ratio the temperature profile derived from the C-C mode spectral parameters displays a second order/disorder transition, at approx. 35.5°C, associated with the melting behavior of approximately three bilayer lipids immobilized by the antibiotic's charged cyclic headgroup and hydrophobic side chain. For the 10:1 mole ratio DMPA/polypeptide liposomes, the temperature profiles indicate three order/disorder transitions at 46, 36 and 24°C. Pure DMPA bilayers display a sharp lamellar-micellar phase transition at 51°C.  相似文献   

11.
The interaction of aqueous phospholipid dispersions of negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG) with the divalent cations Mg(2+), Ca(2+) and Sr(2+) at equimolar ratios in 100 mM NaCl at pH 7 was investigated by Fourier transform infrared spectroscopy. The binding of the three cations induces a crystalline-like gel phase with highly ordered and rigid all-trans acyl chains. These features are observed after storage below room temperature for 24 h. When the gel phase is heated after prolonged incubation at low temperature phase transitions into the liquid crystalline phase are observed at 58 degrees C for the DMPG:Sr(2+), 65 degrees C for the DMPG:Mg(2+), and 80 degrees C for the DMPG:Ca(2+) complex. By subsequent cooling from temperatures above T(m) these complexes retain the features of a liquid crystalline phase with disordered acyl chains until a metastable gel phase is formed at temperatures between 38 and 32 degrees C. This phase is characterized by predominantly all-trans acyl chains, arranged in a loosely packed hexagonal or distorted hexagonal subcell lattice. Reheating the DMPG:Sr(2+) samples after a storage time of 2 h at 4 degrees C results in the transition of the metastable gel to the liquid crystalline phase at 35 degrees C. This phase transition into the liquid crystalline state at 35 degrees C is also observed for the Mg(2+) complex. However, for DMPG:Mg(2+) at higher temperatures, a partial recrystallization of the acyl chains occurs and the high temperature phase transition at 65 degrees C is also detected. In contrast, DMPG:Ca(2+) exhibits only the phase transition at 80 degrees C from the crystalline gel into the fluid state upon reheating. Below 20 degrees C, the rate of conversion from the metastable gel to a thermodynamically stable, crystalline-like gel phase decreases in the order Ca(2+)&z. Gt;Mg(2+)>Sr(2+). This conversion into the crystalline gel phase is accompanied by a complete dehydration of the phosphate groups in DMPG:Mg(2+) and by a reorientation of the polar lipid head groups in DMPG:Ca(2+) and in DMPG:Sr(2+). The primary binding sites of the cations are the PO(2)(-) groups of the phosphodiester moiety. Our infrared spectroscopic results suggest a deep penetration of the divalent cations into the polar head group region of DMPG bilayers, whereby the ester carbonyl groups, located in the interfacial region of the bilayers, are indirectly affected by strong hydrogen bonding of immobilized water molecules. In the liquid crystalline phase, the interaction of all three cations with DMPG is weak, but still observable in the infrared spectra of the DMPG:Ca(2+) complex by a slight ordering effect induced in the acyl chains, when compared to pure DMPG liposomes.  相似文献   

12.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (l(o)) and liquid-disordered (l(d)) phases display significantly different polarities. Moreover, in the l(o) phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 degrees C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

13.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

14.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

15.
Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level).  相似文献   

16.
The effect of probucol on the phase behavior of dimyristoylphosphatidylcholine (DMPC) was examined by fluorescence polarization and differential scanning calorimetry (DSC). Probucol broadens and shifts the temperature of the main phase transition of DMPC liposomes as measured by fluorescence polarization with diphenylhexatriene and trimethyl-ammonium-diphenylhexatrine at concentrations as low as 5 mole%. As measured by DSC, probucol reduces the transition temperature of the gel----liquid-crystalline phase transition of DMPC by approx. 2 C degrees at all concentrations above about 5 mole% probucol and eliminates the pretransition at less than 1 mole%. In addition, the phase transition of DMPC is broadened and the enthalpy of the transition reduced by approx. 50%. Even at high concentrations of probucol, the gel----liquid-crystalline phase transition of DMPC is not eliminated. Similar effects are observed with dipalmitoylphosphatidylcholine liposomes. Based on these DSC measurements, measurements of the melting of probucol in dry mixtures with DMPC and observations of probucol mixtures with DMPC under polarizing optics, the maximum solubility of probucol in DMPC is approx. 10 mole%. This concentration exceeds that required (approx. 0.5 mole%) to prevent peroxidation of 10 mole% arachidonic acid in DMPC liposomes for 30 min in the presence of 0.05 mM Fe(NH4)(SO4)2 at 4 degrees C. Thus, probucol has a limited solubility in saturated phosphatidylcholine bilayers, but is an effective antioxidant at concentrations lower than its maximum solubility.  相似文献   

17.
The association of anionic polyelectrolytes such as dextran sulfate (DS) to zwitterionic phospholipid surfaces via Ca(2+) bridges results in a perturbation of lipid packing at physiologically relevant Ca(2+) concentrations. Lipid area compression was investigated in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar bilayer dispersions by (2)H-NMR and in monolayer studies. Binding of DS to DMPC surfaces via Ca(2+) results in denser lipid packing, as indicated by higher lipid chain order. DMPC order parameters are homogeneously increased throughout the lipid bilayer. Higher order translates into more extended hydrocarbon chains and decreased average lipid area per molecule. Area compression is reported as a function of DS concentration and molecular weight. Altering the NaCl and Ca(2+) concentrations modified electrostatic interactions between DS and phospholipid. A maximal area reduction of DeltaA = 2.7 A(2) per DMPC molecule is observed. The lipid main-phase transition temperature increases upon formation of DMPC/Ca(2+)/DS-complexes. Lipid area compression after addition of DS and Ca(2+) to the subphase was also observed in monolayer experiments. A decrease in surface tension of up to 3.5 mN/m at constant molecular area was observed. DS binds to the lipid headgroups by formation of Ca(2+) bridges without penetrating the hydrophobic region. We suggest that area compression is the result of an attractive electrostatic interaction between neighboring lipid molecules induced by high local Ca(2+) concentration due to the presence of DS. X-ray diffraction experiments demonstrate that DS binding to apposing bilayers reduces bilayer separation. We speculate that DS binding alters the phase state of low-density lipoproteins that associate with polyelectrolytes of the arterial connective tissue in the early stages of arteriosclerosis.  相似文献   

18.
The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The results from these experiments were found to compare favorably with limited measurements made from pure L alpha PC. This detergent-based method for assigning spectra and for determining dipolar couplings and CSA in detergent-free systems should be extendable to other lipid systems. The resulting data set from this study may prove useful in future modeling of the structure and dynamics of DMPC bilayers. In addition, the fact that experiments utilizing each of the three detergents led to similar estimates for the spectral parameters of pure DMPC, and the fact that spectral parameter versus bilayer order plots were linear, indicate that the averaged conformation and dynamics of DMPC in the presence of the three detergents are very similar to those of pure L alpha DMPC.  相似文献   

19.
Membrane fluidity as affected by the insecticide lindane   总被引:3,自引:0,他引:3  
Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to study the interaction of lindane with model and native membranes. Lindane disorders the gel phase of liposomes reconstituted with dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC), since it broadens and shifts the main phase transition, but no apparent effect is detected in the fluid phase. These effects of lindane are more pronounced in bilayers of short-chain lipids, e.g., DMPC. In equimolar mixtures containing DMPC and DSPC, lindane preferentially interacts with the more fluid lipid species inducing lateral phase separations. However, in mixtures of DMPC and DPPC, the insecticide only broadens and shifts the main phase transition, i.e., an effect similar to that observed in bilayers of pure lipids. Lindane has no apparent effect in DMPC bilayers enriched with high cholesterol content (greater than or equal to 30 mol%), whereas disordering effects can still be detected in bilayers with low cholesterol (less than 30 mol%). Apparently, lindane does not perturb the fluid phase of representative native membranes, namely, mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes in agreement with the results obtained in fluid phospholipid bilayers, despite the reasonable incorporation of the insecticide in these membranes, as previously reported (Antunes-Madeira, M.C. and Madeira, V.M.C. (1985) Biochim. Biophys. Acta 820, 165-172).  相似文献   

20.
Raman scattering has been used to obtain high quality vibrational spectra of planar supported lipid bilayers (pslb's) at the silica/water interface without the use of resonance or surface enhancement. A total internal reflection geometry was used both to increase the bilayer signal and to suppress the water background. Polarization control permits the determination of four components of the Raman tensor, of which three are independent for a uniaxial film. Spectra are reported of the phospholipids DMPC, DPPC, and POPC, in the C-H stretching region and the fingerprint region. The temperature-dependent polarized spectra of POPC show only small changes over the range 14-41 degrees C. The corresponding spectra of DMPC and DPPC bilayers show large thermal changes consistent with a decreasing tilt angle from the surface normal and increasing chain ordering at lower temperatures. The thermal behavior of DMPC pslb's is similar to that of vesicles of the same lipid in bulk suspension. In contrast to calorimetry, which shows a sharp phase transition (L alpha-L beta') with decreasing temperature, the changes in the Raman spectra occur over a temperature range of ca. 10 degrees C commencing at the calorimetric phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号