首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The expression of B1 laminin and type IV collagen was followed in the microsurgically isolated endoneurium of transected rat sciatic nerves from 3 days until 8 weeks. Northern hybridizations revealed that after nerve transection the proximal stumps of denervated, as well as freely regenerating, nerves showed a markedly increased expression of laminin and type IV collagen which lasted from 3 days up to 8 weeks. In the distal stumps, close to the site of transection (2-7 mm), the expression of laminin, and to a certain extent that of type IV collagen, seemed to be enhanced if free axonal reinnervation was allowed. Further distally (10-15 mm), the patterns of B1 laminin and type IV collagen expression were similar in both experimental groups, so that an increased expression was noticed during the first 2 weeks. The present results suggest that laminin and type IV collagen gene expression is markedly different in different parts of transected rat sciatic nerve. During peripheral nerve regeneration, there is a long-lasting basement membrane gene expression in the proximal stump. In the distal part of the transected nerve, the axonal reinnervation possibly up-regulates, but is not essential for, the expression of B1 laminin and type IV collagen.  相似文献   

2.
Is astrocyte laminin involved in axon guidance in the mammalian CNS?   总被引:4,自引:0,他引:4  
This paper provides evidence for the expression of laminin on glia in correlation with axon elongation and nerve pathway formation during embryonic development of the mouse optic nerve and other parts of the central nervous system (CNS). We show that punctate deposits of laminin on immature glial cells precede the entrance of the first optic axons into the nerve, and remain in close association with growing axons. Furthermore, we show that in one particular region of the optic pathway that the retinal ganglion cell axons avoid in normal animals (i.e., the pigmented area of the distal nerve) the punctate laminin matrix is missing. As the optic nerve matures punctate laminin deposits disappear, and laminin is reduced in the astroglial cytoplasm. The close correlation of the punctate form of laminin with early axonal growth is true not only in the optic nerve but also in some other parts of the CNS. We demonstrate such punctate laminin deposits in a model of astrocyte-induced regeneration of the corpus callosum in acallosal mice (G. Smith, R. Miller, and J. Silver, 1986, J. Comp. Neurol. 251, 23-43), and in glia associated with several normal developing axon trajectories, such as the corpus callosum, fornix, and pathways in the embryonic hindbrain. In all of these regions punctate laminin deposits are found on astroglia that are associated with early growing axons. Our results indicate that the punctate form of laminin, produced by astrocytes, may be an important factor involved in axon elongation and nerve pathway formation in the mammalian CNS.  相似文献   

3.
P Liesi 《The EMBO journal》1985,4(10):2505-2511
Most regions of the adult mammalian central nervous system (CNS) do not support axonal growth and regeneration. Laminin, expressed by cultured astrocytes and known to promote neurite outgrowth of cultured neurons, is normally present in brain basement membranes, and only transiently induced in adult brain astrocytes by injury. Here I provide three lines of evidence which suggest that the continued expression of laminin by astrocytes may be a prerequisite for axonal growth and regeneration in adult CNS. Firstly, laminin is continuously present in astrocytes of adult rat olfactory bulb apparently in close association with the olfactory nerve axons. Secondly, laminin is continuously expressed by astrocytes in adult frog brain, and sectioning of the optic tract further increases laminin immunoreactivity in astrocytes of the optic tectum during the period of axonal regeneration. Lastly, laminin appears normally in astrocytes of the frog and goldfish optic nerves which regenerate, but not in astrocytes of the rat or chick optic nerves which do not regenerate. The selective association of laminin with axons that undergo growth and regeneration in vivo is consistent with the possibility that astrocytic laminin provides these central nervous systems with their regenerative potential.  相似文献   

4.
Within a few decades, the repair of long neuronal pathways such as spinal cord tracts, the optic nerve or intracerebral tracts has gone from being strongly contested to being recognized as a potential clinical challenge. Cut axonal stumps within the optic nerve were originally thought to retract and become irreversibly necrotic within the injury zone. Optic nerve astrocytes were assumed to form a gliotic scar and remodelling of the extracellular matrix to result in a forbidden environment for re-growth of axons. Retrograde signals to the ganglion cell bodies were considered to prevent anabolism, thus also initiating apoptotic death and gliotic repair within the retina. However, increasing evidence suggests the reversibility of these regressive processes, as shown by the analysis of molecular events at the site of injury and within ganglion cells. We review optic nerve repair from the perspective of the proximal axon stump being a major player in determining the successful formation of a growth cone. The axonal stump and consequently the prospective growth cone, communicates with astrocytes, microglial cells and the extracellular matrix via a panoply of molecular tools. We initially highlight these aspects on the basis of recent data from numerous laboratories. Then, we examine the mechanisms by which an injury-induced growth cone can sense its surroundings within the area distal to the injury. Based on requirements for successful axonal elongation within the optic nerve, we explore the models employed to instigate successful growth cone formation by ganglion cell stimulation and optic nerve remodelling, which in turn accelerate growth. Ultimately, with regard to the proteomics of regenerating retinal tissue, we discuss the discovery of isoforms of crystallins, with crystallin beta-b2 (crybb2) being clearly upregulated in the regenerating retina. Crystallins are produced and used to promote the elongation of growth cones. In vivo and in vitro, crystallins beta and gamma additionally promote the growth of axons by enhancing the production of ciliary neurotrophic factor (CNTF), indicating that they also act on astrocytes to promote axonal regrowth synergistically. These are the first data showing that axonal regeneration is related to crybb2 movement within neurons and to additional stimulation of CNTF. We demonstrate that neuronal crystallins constitute a novel class of neurite-promoting factors that probably operate through an autocrine and paracrine mechanism and that they can be used in neurodegenerative diseases. Thus, the post-injury fate of neurons cannot be seen merely as inevitable but, instead, must be regarded as a challenge to shape conditions for initiating growth cone formation to repair the damaged optic nerve.  相似文献   

5.
The somatosensory nervous system is responsible for the transmission of a multitude of sensory information from specialized receptors in the periphery to the central nervous system. Sensory afferents can potentially be damaged at several sites: in the peripheral nerve; the dorsal root; or the dorsal columns of the spinal cord; and the success of regeneration depends on the site of injury. The regeneration of peripheral nerve branches following injury is relatively successful compared to central branches. This is largely attributed to the presence of neurotrophic factors and a Schwann cell basement membrane rich in permissive extracellular matrix (ECM) components which promote axonal regeneration in the peripheral nerve. Modulation of the ECM environment and/or neuronal integrins may enhance regenerative potential of sensory neurons following peripheral or central nerve injury or disease. This review describes the interactions between integrins and ECM molecules (particularly the growth supportive ligands, laminin, and fibronectin; and the growth inhibitory chondroitin sulfate proteoglycans (CSPGs)) during development and regeneration of sensory neurons following physical injury or neuropathy.  相似文献   

6.
During axonal elongation in the developing peripheral nervous system, the temporal and spatial distribution of adhesive molecules in extracellular matrices and on neighboring cell surfaces may provide "choices" of pathways for growth cone migration. The extracellular matrix glycoprotein laminin appears in early embryos and mediates neuronal adhesion and neurite extension in vitro. In this study, we have examined the distribution of laminin at early periods of peripheral nervous system development. The distribution of laminin, demonstrated by immunostaining frozen sections of chick embryos, was compared to the distribution of fibronectin and of early peripheral neurites as revealed with an antibody to a neurofilament-associated protein. Laminin is present in the neural tube basement membrane, in early ganglia, and in developing dorsal and ventral roots, where the laminin staining pattern parallels that of neurofilaments. In early ganglia and nerve roots, laminin immunostaining defines loose "meshworks" rather than basement membranes, which seem to form slightly later in these structures. In contrast, fibronectin is absent in neural tube basement membrane, ganglia, and nerve roots, although it is present along neural crest migratory pathways and in intersomitic spaces. Our observations of laminin distribution are consistent with the possibility that laminin provides an adhesive surface for neurite extension at some stages of early peripheral nervous system development.  相似文献   

7.
Work from several laboratories has identified a proteoglycan complex secreted by a variety of non-neuronal cells that can promote neurite regeneration when applied to the surface of culture dishes. Using a novel immunization protocol, a monoclonal antibody (INO) was produced that blocks the activity of this outgrowth-promoting factor (Matthew, W. D., and P. H. Patterson, 1983, Cold Spring Harbor Symp. Quant. Biol. 48:625-631). We have used the antibody to analyze the components of the active site and to localize the complex in vivo. INO binding is lost when the complex is dissociated; if its components are selectively reassociated, INO binds only to a complex containing two different molecular weight species. These are likely to be laminin and heparan sulfate proteoglycan, respectively. On frozen sections of adult rat tissues, INO binding is present on the surfaces of glial cells of the peripheral, but not the central, nervous system. INO also binds to the basement membrane surrounding cardiac and skeletal muscle cells, and binding to the latter greatly increases after denervation. In the adrenal gland and kidney, INO selectively reacts with areas rich in basement membranes, staining a subset of structures that are immunoreactive for both laminin and heparan sulfate proteoglycan. In general, the outgrowth-blocking antibody binds to areas known to promote axonal regeneration and is absent from areas known to lack this ability. This suggests that this complex, which is active in culture, may be the physiological substrate supporting nerve regeneration in vivo.  相似文献   

8.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

9.
A receptor–ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type‐specific post‐receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death‐triggering factor in motoneurons through LT‐βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT‐induced axonal elongation and branching require ERK and caspase‐9 pathways. This distinct response involves a compartment‐specific activation of LIGHT signals, with somatic activation‐inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.  相似文献   

10.
Although astrocytic gliosis has been linked to failure of axonal regeneration in the adult mammalian CNS, its role is not fully established. We used an in vitro assay to investigate the role of reactive astrocytes and macrophages in influencing axonal growth in the lesioned adult rat optic nerve. Soon after optic nerve transection, the nonpermissive nature of the optic nerve is altered to a permissive state near the lesion. This may account for injury-induced axonal sprouting and may contribute to the failure of these sprouts to elongate beyond the site of the lesion in vivo. We provide evidence that this lesion-induced change in the axonal growth-promoting properties of the CNS near the lesion may be produced by mononuclear phagocytes. In addition, several months after optic nerve transection, the degenerated nerves, which consist mainly of astrocytes and lack myelin, i.e., astrocytic "scar" tissue, are a good substrate for neurite growth. Taken together, these results suggest that in this in vitro system, substantial inhibitory effects are not associated with regions of astrocytic gliosis and that the nonpermissive nature of the CNS white matter can be modified by macrophages.  相似文献   

11.
The optic nerve, as a part of the central nervous system (CNS), has been used to study axonal transport for decades. The present study has concentrated on the axonal transport of synaptic vesicle proteins in the optic nerve, using the “stop-flow/nerve crush” method. After blocking fast axonal transport, distinct accumulations of synaptic vesicle proteins developed during the first hour after crush-operation and marked increases were observed up to 8 h postoperative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immunoincubated sections, revealed that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was much higher (up to 80–90%) for the transmembrane proteins than that for surface adsorbed proteins (only 10–20%). The pattern of axonal transport in the optic nerve was comparable to that in the sciatic nerve. However, clathrin and Rab3a immunoreactivities were accumulated in much lower amounts than that in the sciatic nerve. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. A differential distribution of synaptobrevin I and II, however, was observed in the optic nerve axons; synaptobrevin I was present in large-sized axons, while synaptobrevin II immunoreactivity was present in most axons, including the large ones. The two isoforms were, thus, partially colocalized. The results demonstrate that (1) cytofluorimetric scanning techniques could be successfully used to study axonal transport not only in peripheral nerves, but also in the CNS; (2) synaptic vesicles are transported with fast axonal transport in this nerve; and (3) some differences were noted compared with the sciatic nerve, especially for Rab3a and clathrin. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 237–250, 1997.  相似文献   

12.
It is known that following peripheral nerve transections, sheath cells proliferate and migrate to form a bridge between nerve stumps, which may facilitate axonal regeneration. In the present investigations, cellular migration and axonal outgrowth from nerves of adult mice were studied in vitro using collagen gels. During the first 3 days in culture, profuse migration of fibroblasts and macrophages occurred from the ends of sciatic nerve segments, which had been lesioned in situ a few days prior to explanation, but not from segments of normal nerves. The mechanism of cellular activation in the lesioned nerves was not determined, but migration was blocked by suramin, which inhibits the actions of several growth factors. The migrating cells, which form the bridge tissue, may promote axonal regeneration in two ways. Firstly, axonal outgrowth from isolated intercostal nerves was significantly increased in co-cultures with bridges from lesioned sciatic nerves. This stimulatory effect was inhibited by antibodies to 2.5S nerve growth factor. Secondly, the segments of bridge tissue contracted when removed from animals. It is possible that fibroblasts within the bridge exert traction that would tend to pull the lesioned stumps of peripheral nerve together, as in the healing of skin wounds. The traction may also influence deposition of extracellular matrix materials, such as collagen fibrils, which could orient the growth of the regenerating axons toward the distal nerve stump. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A 190/220-kDa complex found in integrin preparations was purified, and monoclonal antibodies were raised against it. The immunoaffinity-purified complex appears to be a trimer of very similar or identical 70-kDa subunits. It is a novel extracellular matrix molecule as determined by its subunit composition, N-terminal amino acid sequence, and in vivo localization. It is distributed widely in basement membranes including those from muscle, nerve, and kidney. It is also present in connective tissue regions such as perineurium and perimysium. It has the unusual property that it is initially expressed very late in avian development near the time of hatching. This protein is found to copurified with integrin because it binds to the carbohydrate support in Sepharose. Hemagglutination assays with mono- and disaccharides show that it functions as a lectin with galactoside-binding specificity. This protein is also found to bind strongly and specifically to laminin at a site distinct from its lectin activity, but does not bind to fibronectin or type IV collagen. The protein appears to be conserved and is a common contaminant of many laminin preparations. We call this novel protein "LBL" for laminin-binding lectin.  相似文献   

14.
During neurite elongation in the developing peripheral nervous system, the distribution of laminin and fibronectin may provide preferred substrates for neurite elongation. In this study, the response of sensory neurites and growth cones to patterns of laminin or fibronectin applied to a background substrate of Type IV collagen was studied to determine any possible substrate preference. Neurites exhibited elongation restricted to a laminin pattern, but not a fibronectin pattern, indicating that sensory neurites prefer to elongate on laminin compared to Type IV collagen. When polylysine is included in the background substrate, neurite preference for laminin is decreased. Laminin also enhances neurite elongation and defasciculation and stabilizes growth cone protrusions. These results suggest an adhesive as well as a cytoskeletal involvement in the response to laminin, but direct adhesion estimates indicate that laminin decreases overall adhesion, arguing against an adhesive involvement. Regardless of the mechanism involved, the observed neurite preference for laminin is consistent with the hypothesis that spatial and temporal laminin distributions provide preferred pathways for peripheral neurite elongation.  相似文献   

15.
In this protocol, we describe the imaging of single axons in the rat optic nerve in vivo. Axons are labeled through the intravitreal injection of adeno-associated viral vectors (AAVs) expressing a fluorophore (duration of the procedure ~1 h). Two weeks after intravitreal injection, the optic nerve is surgically exposed (duration ~1 h) and labeled axons are imaged with an epifluorescence microscope either for up to 8 h or repetitively on the following days. Additionally, intravitreal injection of calcium-sensitive dyes allows for imaging of intra-axonal calcium kinetics. This procedure enables the analysis of the morphological changes of degenerating axons in the optic nerve in different lesion paradigms, such as optic nerve crush, axotomy or pin lesion. Furthermore, the effects of pharmacological manipulations on axonal stability and axonal calcium kinetics in axons of the central nervous system can be studied in vivo.  相似文献   

16.
Abstract: Biochemical evidence suggests that neuroglia are responsive to glucocorticoids, yet previous studies of glucocorticoid localization have typically failed to demonstrate significant uptake by neuroglial cells. To further investigate this problem, we measured glycerol-3-phosphate dehydrogenase (GPDH) activity and glucocorticoid receptor binding capacity in normal rat optic nerves and in those undergoing Wallerian (axonal) degeneration. Binding studies were also performed on hippocampus and anterior pituitary for comparison purposes. Normal optic nerve preparations possessed a high level of GPDH activity that was glucocorticoid-inducible and that increased further following axonal degeneration. Antibody inactivation experiments demonstrated the presence of more enzyme molecules in the degenerating nerve preparations. Correlative immunocytochemical studies found GPDH-positive reaction product only in morphologically identified oligodendrocytes, a result that is consistent with the previously reported localization of this enzyme in rat brain. Optic nerve cytosol fractions displayed substantial high-affinity binding of both dexamethasone (DEX) and corticosterone (CORT) that, like GPDH, was elevated approximately twofold in degenerating nerves. Finally, in vivo accumulation of [3H]DEX and [3H]CORT by optic nerve and other myelinated tracts was examined using nuclear isolation and autoradiographic methods. Although neither steroid was found to be heavily concentrated by these tissues in vivo , a small preference for DEX was observed in the nuclear uptake experiments. These results are discussed in terms of the hypothesis that glial cells are targets for glucocorticoid hormones.  相似文献   

17.
In adult mammals, injured axons regrow over long distances in peripheral nerves but fail to do so in the central nervous system. Analysis of molecular components of tissue environments that allow axonal regrowth revealed a dramatic increase in the level of hemopexin, a heme-transporting protein, in long-term axotomized peripheral nerve. In contrast, hemopexin did not accumulate in lesioned optic nerve. Sciatic nerve and skeletal muscle, but not brain, were shown to be sites of synthesis of hemopexin. Thus, hemopexin expression, which can no longer be considered to be liver-specific, correlates with tissular permissivity for axonal regeneration.  相似文献   

18.
The cellular and molecular basis of peripheral nerve regeneration   总被引:48,自引:0,他引:48  
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such asN-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.  相似文献   

19.
S Kr?ger  J Walter 《Neuron》1991,6(2):291-303
During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane.  相似文献   

20.
When added to a collagen-filled nerve guide, purified acidic fibroblast growth factor (aFGF) increased the number of myelinated axons that regenerated across a 5-mm nerve gap distance. In addition, a greater number of primary sensory and motor neurons extended axons through the nerve guide in animals treated with aFGF. Thus the effect of aFGF on peripheral nerve regeneration is not simply an increase in axonal branching within the nerve guide tube. This is the first highly purified growth factor since nerve growth factor that has been shown to promote nerve regeneration in vivo. This experimental model provides a convenient and quantitative means to assess the effects of putative neuronotropic factors on peripheral nerve regeneration in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号