首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在真核生物中,DNA复制在染色体上特定的多位点起始.当细胞处在晚M及G1期,多个复制起始蛋白依次结合到DNA复制源,组装形成复制前复合体.pre.RC在Gl-S的转折期得到激活,随后,多个直接参与DNA复制又形成的蛋白结合到DNA复制源,启动DNA的复制,形成两个双向的DNA复制又.在染色体上,移动的DNA复制又经常会碰到复制障碍(二级DNA结构、一些蛋白的结合位点、损伤的碱基等)而暂停下来,此时,需要细胞周期检验点的调控来稳定复制叉,否则,会导致复制又垮塌及基因组不稳定.本文就真核细胞染色体DNA复制起始的机制,以及复制又稳定性的维持机制进行简要综述.  相似文献   

2.
All 16 centromere DNA regions of Saccharomyces cerevisiae including 90 bp framing sequences on either side were cloned. These 300 bp long centromere regions were analysed by native polyacrylamide gel electrophoresis and found to display a reduced mobility indicative of DNA curvature. The degree of curvature is centromere dependent. The experimental data were confirmed by computer analysis of the 3-dimensional structure of the CEN DNAs. Altogether these data provide further evidence for a model for budding yeast centromeres in which CEN DNA structure could be important for the assembly, activity and/or regulation of the centromere protein-DNA complex.  相似文献   

3.
Accurate and complete DNA replication is fundamental to maintain genome integrity. While the mechanisms and underlying machinery required to duplicate bulk genomic DNA are beginning to emerge, little is known about how cells replicate through damaged areas and special chromosomal regions such as telomeres, centromeres, and highly transcribed loci . Here, we have investigated the role of the yeast cullin Rtt101p in this process. We show that rtt101Delta cells accumulate spontaneous DNA damage and exhibit a G(2)/M delay, even though they are fully proficient to detect and repair chromosome breaks. Viability of rtt101Delta mutants depends on Rrm3p, a DNA helicase involved in displacing proteinaceous complexes at programmed pause sites . Moreover, rtt101Delta cells show hyperrecombination at forks arrested at replication fork barriers (RFBs) of ribosomal DNA. Finally, rtt101Delta mutants are sensitive to fork arrest induced by DNA alkylation, but not by nucleotide depletion. We therefore propose that the cullin Rtt101p promotes fork progression through obstacles such as DNA lesions or tightly bound protein-DNA complexes via a new mechanism involving ubiquitin-conjugation.  相似文献   

4.
The replication checkpoint is a dedicated sensor-response system activated by impeded replication forks. It stabilizes stalled forks and arrests division, thereby preserving genome integrity and promoting cell survival. In budding yeast, Tof1 is thought to act as a specific mediator of the replication checkpoint signal that activates the effector kinase Rad53. Here we report studies of fission yeast Swi1, a Tof1-related protein required for a programmed fork-pausing event necessary for mating type switching. Our studies have shown that Swi1 is vital for proficient activation of the Rad53-like checkpoint kinase Cds1. Together they are required to prevent fork collapse in the ribosomal DNA repeats, and they also prevent irreversible fork arrest at a newly identified hydroxyurea pause site. Swi1 also has Cds1-independent functions. Rad22 DNA repair foci form during S phase in swi1 mutants and to a lesser extent in cds1 mutants, indicative of fork collapse. Mus81, a DNA endonuclease required for recovery from collapsed forks, is vital in swi1 but not cds1 mutants. Swi1 is recruited to chromatin during S phase. We propose that Swi1 stabilizes replication forks in a configuration that is recognized by replication checkpoint sensors.  相似文献   

5.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.  相似文献   

6.
In budding yeast the cullin Rtt101 promotes replication fork progression through natural pause sites and areas of DNA damage, but its relevant subunits and molecular mechanism remain poorly understood. Here, we show that in budding yeast Mms1 and Mms22 are functional subunits of an Rtt101-based ubiquitin ligase that associates with the conjugating-enzyme Cdc34. Replication forks in mms1Delta, mms22Delta and rtt101Delta cells are sensitive to collisions with drug-induced DNA lesions, but not to transient pausing induced by nucleotide depletion. Interaction studies and sequence analysis have shown that Mms1 resembles human DDB1, suggesting that Rtt101(Mms1) is the budding yeast counterpart of the mammalian CUL4(DDB1) ubiquitin ligase family. Rtt101 interacts in an Mms1-dependent manner with the putative substrate-specific adaptors Mms22 and Crt10, the latter being a regulator of expression of ribonucleotide reductase. Taken together, our data suggest that the Rtt101(Mms1) ubiquitin ligase complex might be required to reorganize replication forks that encounter DNA lesions.  相似文献   

7.
Labib K  Hodgson B 《EMBO reports》2007,8(4):346-353
Defects in chromosome replication can lead to translocations that are thought to result from recombination events at stalled DNA replication forks. The progression of forks is controlled by an essential DNA helicase, which unwinds the parental duplex and can stall on encountering tight protein-DNA complexes. Such pause sites are hotspots for recombination and it has been proposed that stalled replisomes disassemble, leading to fork collapse. However, in both prokaryotes and eukaryotes it now seems that paused forks are surprisingly stable, so that DNA synthesis can resume without recombination if the barrier protein is removed. Recombination at stalled forks might require other events that occur after pausing, or might be dependent on features of the surrounding DNA sequence. These findings have important implications for our understanding of the regulation of genome stability in eukaryotic cells, in which pausing of forks is mediated by specific proteins that are associated with the replicative helicase.  相似文献   

8.
We have taken advantage of the known structural parameters associated with centromere DNA in vivo to construct a CEN fragment that can be selectively excised from the chromatin DNA with restriction endonucleases. CEN3 DNA is organized in chromatin such that a 220-250-bp region encompassing the elements of centromere homology is resistant to nuclease digestion. Restriction enzyme linkers encoding the Bam HI-recognition site were ligated to a 289 base pair DNA segment that spans the 220-250-bp protected core (Bloom et al., 1984). Replacement of this CEN3-Bam HI linker cassette into a chromosome or plasmid results in formation of a complete structural and functional centromeric unit. A centromere core complex that retains its protected chromatin conformation can be selectively excised from intact nuclei by restriction with the enzyme Bam HI. The centromeric protein-DNA complex is therefore not dependent upon the intact torsional constrains on linear chromosomes for its structural integrity. Isolation of this complex provides a novel approach to characterizing authentic centromeric proteins bound to DNA in their native state.  相似文献   

9.
The centromere and promoter factor Cpf1 binds centromere DNA element I found in all centromere DNAs from the yeast Saccharomyces cerevisiae. We analyzed thirty different point mutations in or around CEN6-CDEI (ATCACGTG) for their relative binding affinity to Cpf1 and these data were compared with the in vivo centromere function of these mutants. We show that the minimal length of the Cpf1 binding site needed for full in vitro binding and in vivo activity is 10 base pairs long comprised of CDEI plus the two base pairs 3' of this sequence. The palindromic core sequence CACGTG is most important for in vivo CEN function and in vitro Cpf1 binding. Symmetrical mutations in either halfsite of the core sequence affect in vitro Cpf1 binding and in vivo mitotic centromere function asymmetrically albeit to a different extent. Enlarging the CDEI palindrome to 12 or 20 bps increases in vitro Cpf1 binding but results in increased chromosome loss rates suggesting a need for asymmetrical Cpf1 binding sequences. Additionally, the ability of Cpf1 protein to bind a mutant CDEI element in vitro does not parallel the ability of that mutant to confer in vivo CEN activity. Our data indicate that the in vitro binding characteristics of Cpf1 to CDEI only partly overlap with their corresponding activity within the centromere complex, thus suggesting that in the in vivo situation the CDEI/Cpf1 complex might undergo interactions with other centromere DNA/protein complexes.  相似文献   

10.
11.
Vázquez MV  Rojas V  Tercero JA 《DNA Repair》2008,7(10):1693-1704
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.  相似文献   

12.
The protein kinase Hsk1 is essential for DNA replication in Schizosaccharomyces pombe. It associates with Dfp1/Him1 to form an active complex equivalent to the Cdc7-Dbf4 protein kinase in Saccharomyces cerevisiae. Swi1 and Swi3 are subunits of the replication fork protection complex in S. pombe that is homologous to the Tof1-Csm3 complex in S. cerevisiae. The fork protection complex helps to preserve the integrity of stalled replication forks and is important for activation of the checkpoint protein kinase Cds1 in response to fork arrest. Here we describe physical and genetic interactions involving Swi1 and Hsk1-Dfp1/Him1. Dfp1/Him1 was identified in a yeast two-hybrid screen with Swi1. Hsk1 and Dfp1/Him1 both co-immunoprecipitate with Swi1. Swi1 is required for growth of a temperature-sensitive hsk1 (hsk1ts) mutant at its semi-permissive temperature. Hsk1ts cells accumulate Rad22 (Rad52 homologue) DNA repair foci at the permissive temperature, as previously observed in swi1 cells, indicating that abnormal single-stranded DNA regions form near the replication fork in hsk1ts cells. hsk1ts cells were also unable to properly delay S-phase progression in the presence of a DNA alkylating agent and were partially defective in mating type switching. These data suggest that Hsk1-Dfp1/Him1 and Swi1-Swi3 complexes have interrelated roles in stabilization of arrested replication forks.  相似文献   

13.
Centromere function on minichromosomes isolated from budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
Centromeres are a complex of centromere DNA (CEN DNA) and specific factors that help mediate microtubule-dependent movement of chromosomes during mitosis. Minichromosomes can be isolated from budding yeast in a way that their centromeres retain the ability to bind microtubules in vitro. Here, we use the binding of these minichromosomes to microtubules to gain insight into the properties of centromeres assembled in vivo. Our results suggest that neither chromosomal DNA topology nor proximity of telomeres influence the cell's ability to assemble centromeres with microtubule-binding activity. The microtubule-binding activity of the minichromosome's centromere is stable in the presence of competitor CEN DNA, suggesting that the complex between the minichromosome CEN DNA and proteins directly bound to it is very stable. The efficiency of centromere binding to microtubules is dependent upon the concentration of microtubule polymer and is inhibited by ATP. These properties are similar to those exhibited by mechanochemical motors. The binding of minichromosomes to microtubules can be inactivated by the presence of 0.2 M NaCl and then reactivated by restoring NaCl to 0.1 M. In 0.2 M NaCl, some centromere factor(s) bind to microtubules, whereas other(s) apparently remain bound to the minichromosome's CEN DNA. Therefore, the yeast centromere appears to consist of two domains: the first consists of a stable core containing CEN DNA and CEN DNA-binding proteins; the second contains a microtubule-binding component(s). The molecular functions of this second domain are discussed.  相似文献   

14.
Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for centromere function. Mutations affecting the segregation properties of centromeres also exhibit altered chromatin structures in vivo. Thus the structure, as delineated by nuclease digestion, correlated with functional centromeres. We have determined the contribution of histone proteins to this unique structural organization. Nucleosome depletion by repression of either histone H2B or H4 rendered the cell incapable of chromosome segregation. Histone repression resulted in increased nuclease sensitivity of centromere DNA, with up to 40% of CEN3 DNA molecules becoming accessible to nucleolytic attack. Nucleosome depletion also resulted in an alteration in the distribution of nuclease cutting sites in the DNA surrounding CEN3. These data provide the first indication that authentic nucleosomal subunits flank the centromere and suggest that nucleosomes may be the central core of the centromere itself.  相似文献   

15.
Centromeres form specialized chromatin structures termed kinetochores which are required for accurate segregation of chromosomes. DNA lesions might disrupt protein-DNA interactions, thereby compromising segregation and genome stability. We show that yeast centromeres are heavily resistant to removal of UV-induced DNA lesions by two different repair systems, photolyase and nucleotide excision repair. Repair resistance persists in G(1)- and G(2)/M-arrested cells. Efficient repair was obtained only by disruption of the kinetochore structure in a ndc10-1 mutant, but not in cse4-1 and cbf1 Delta mutants. Moreover, UV photofootprinting and DNA repair footprinting showed that centromere proteins cover about 120 bp of the centromere elements CDEII and CDEIII, including 20 bp of flanking CDEIII. Thus, DNA lesions do not appear to disrupt protein-DNA interactions in the centromere. Maintaining a stable kinetochore structure seems to be more important for the cell than immediate removal of DNA lesions. It is conceivable that centromeres are repaired by postreplication repair pathways.  相似文献   

16.
Noguchi C  Noguchi E 《Genetics》2007,175(2):553-566
Sap1 is involved in replication fork pausing at rDNA repeats and functions during mating-type switching in Schizosaccharomyces pombe. These two roles are dependent on the ability of Sap1 to bind specific DNA sequences at the rDNA and mating-type loci, respectively. In S. pombe, Swi1 and Swi3 form the replication fork protection complex (FPC) and play important roles in the activation of the replication checkpoint and the stabilization of stalled replication forks. Here we describe the roles of Sap1 in the replication checkpoint. We show that Sap1 is involved in the activation of the replication checkpoint kinase Cds1 and that sap1 mutant cells accumulate spontaneous DNA damage during the S- and G2-phases, which is indicative of fork damage. We also show that sap1 mutants have a defect in the resumption of DNA replication after fork arrest. Sap1 is localized at the replication origin ori2004 and this localization is required for the association of the FPC with chromatin. We propose that Sap1 is required to recruit the FPC to chromatin, thereby contributing to the activation of the replication checkpoint and the stabilization of replication forks.  相似文献   

17.
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.  相似文献   

18.
Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.  相似文献   

19.
The encounter of a replication fork with either a damaged DNA template, a nick in the template strand or a 'frozen' protein-DNA complex can stall the replisome and cause it to fall apart. Such an event generates a requirement for replication fork restart if the cell is going to survive. Recent evidence shows that replication fork restart is effected by the action of the recombination proteins generating a substrate for PriA-directed replication fork assembly.  相似文献   

20.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号