首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of peptide drugs and therapeutic proteins is limited by the poor permeability and the selectivity of the cell membrane. There is a growing effort to circumvent these problems by designing strategies to deliver full-length proteins into a large number of cells. A series of small protein domains, termed protein transduction domains (PTDs), have been shown to cross biological membranes efficiently and independently of transporters or specific receptors, and to promote the delivery of peptides and proteins into cells. TAT protein from human immunodeficiency virus (HIV-1) is able to deliver biologically active proteins in vivo and has been shown to be of considerable interest for protein therapeutics. Similarly, the third alpha-helix of Antennapedia homeodomain, and VP22 protein from herpes simplex virus promote the delivery of covalently linked peptides or proteins into cells. However, these PTD vectors display a certain number of limitations in that they all require crosslinking to the target peptide or protein. Moreover, protein transduction using PTD-TAT fusion protein systems may require denaturation of the protein before delivery to increase the accessibility of the TAT-PTD domain. This requirement introduces an additional delay between the time of delivery and intracellular activation of the protein. In this report, we propose a new strategy for protein delivery based on a short amphipathic peptide carrier, Pep-1. This peptide carrier is able to efficiently deliver a variety of peptides and proteins into several cell lines in a fully biologically active form, without the need for prior chemical covalent coupling or denaturation steps. In addition, this peptide carrier presents several advantages for protein therapy, including stability in physiological buffer, lack of toxicity, and lack of sensitivity to serum. Pep-1 technology should be extremely useful for targeting specific protein-protein interactions in living cells and for screening novel therapeutic proteins.  相似文献   

2.
Introduction of exogenous DNA into mammalian cells represents a powerful approach for manipulating signal transduction. The available techniques, however, are limited by low transduction efficiency and low cell viability after transduction. Here we report a highly efficient molecular delivery technique, named nanotube spearing, based on the penetration of nickel-embedded nanotubes into cell membranes by magnetic field driving. DNA plasmids containing the enhanced green fluorescent protein (EGFP) sequence were immobilized onto the nanotubes, and subsequently speared into targeted cells. We have achieved an unprecedented high transduction efficiency in Bal17 B-lymphoma, ex vivo B cells and primary neurons with high viability after transduction. This technique may provide a powerful tool for highly efficient gene transfer into a variety of cells, especially the hard-to-transfect cells.  相似文献   

3.
Muratovska A  Eccles MR 《FEBS letters》2004,570(1-3):63-68
Cholesterol enrichment of rat liver mitochondria (CHM) impairs atractyloside-induced mitochondrial permeability transition (MPT) due to decreased membrane fluidity. In this study we addressed the effect of cholesterol enrichment on MPT induced by reactive oxygen species (ROS). Superoxide anion generated by xanthine plus xanthine oxidase triggered mitochondrial swelling and cytochrome c release in CHM, which was prevented by butylated hydroxytoluene, an anti-voltage-dependent anion channel antibody, or cyclosporin A. Furthermore, hydrogen peroxide generated by the combination of ganglioside GD3 and mitochondrial GSH depletion elicited mitochondrial swelling and release of cytochrome c, Smac/Diablo and apoptosis-inducing factor in control mitochondria and CHM. Thus, ROS induce MPT and apoptosome activation regardless of decreased mitochondrial membrane dynamics due to cholesterol enrichment.  相似文献   

4.
Retroviral vectors that contain the tetracycline-inducible (Tet) system were developed. The two components of the Tet system were organized within the vectors in a manner that stringently maintains tetracycline-dependent regulation. Regulated expression of an indicator gene inserted into the retroviral vectors was examined in several different cell types. In infected NIH 3T3 cells, levels of induction in the absence of tetracycline were observed to be as much as 336-fold higher than levels in the presence of tetracycline, which were extremely low. Tetracycline-dependent regulation was observed in all other transduced cell types and ranged from 24- to 127-fold. The generation of retroviral vectors containing regulatory elements that allow for the regulated expression of heterologous genes and that have the ability to infect virtually all dividing target cells should greatly facilitate the biochemical and genetic examination of a broad range of genes. Moreover, these inducible retroviral vectors should prove useful in gene therapy applications.  相似文献   

5.
Graft-copolymers, containing poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) chains have been proposed as carriers for delivery of phosphorothioate oligonucleotides (SODNs). Complexes of such copolymers with SODN self-assemble into particles having a core of neutralized PEI and SODN and a corona of PEG. Transferrin molecules are attached to the PEG corona using avidin/biotin construct. For this purpose, biotin moieties are covalently linked to the free ends of the PEG chains in the PEG-g-PEI copolymer. SODNs are reacted with mixtures of biotinylated and biotin-free PEG-g-PEI copolymers of various compositions to adjust the number of the biotin moieties in the complex. Resulting complexes have small size (ca. 40 nm) and do not aggregate in aqueous solutions for at least several days. To attach transferrin, they are supplemented first with avidin and then with biotin-transferrin conjugate. This increases the effective diameter of the particles to ca. 75-103 nm, depending on the composition of the complex. Cellular accumulation and fluorescence microscopy studies characterize the effects of these modifications on interaction of fluorescently labeled SODNs with KBv cell monolayers. The data suggest significant enhancement of SODN association with cells resulting from modification of the complex with transferrin. SODN complimentary to the site 546-565 of human mdr 1-mRNA was used to inhibit expression of the drug efflux transporter, P-glycoprotein (P-gp), in multiple drug resistant (MDR) cancer cells (KBv, MCF-7 ADR). Accumulation of a P-gp specific probe, rhodamine 123, in the cell monolayers is used to characterize the effects on P-gp efflux system following the treatment of the cells with antisense SODN or its complexes. This study suggests that antisense SODN incorporated in the complexes retain the ability to inhibit P-gp efflux system, while complexes of the randomized control SODN are inactive. Therefore, the antisense SODN is released from the complex and interacts with its intracellular target upon interaction of the complexes with the cells. Furthermore, modification of the complexes with transferrin leads to a significant increase of the effects of the antisense SODN on the P-gp efflux system in the cells. Overall, this study suggests that polyion complex micelles with protein-modified corona are promising tools for the delivery of antisense SODN.  相似文献   

6.
Baculovirus expression vectors are extensively used for the delivery of foreign genes and expression of recombinant proteins in insect and mammalian cells. Modified baculoviruses containing mammalian promoter elements (BacMam viruses) for an efficient transient and stable transduction of diverse mammalian cells ensure a high level of heterologous protein expression both in vitro and in vivo. Recombinant baculovirus vectors containing mammalian expression cassette with cytomegalovirus promoter, green or red fluorescent protein gene, SV40pA polyadenylation signal, and polylinker MCS were constructed for the delivery of genes encoding hepatitis C virus structural proteins into mammalian cells. In HEK293T and Huh7 cells, formation of glycoprotein complexes and HCV4ike particles was observed. A high efficiency of the baculovirus-medi-ated gene transfer and expression of the virus envelope proteins in mammalian cells was demonstrated using fluorescence, flow cytometry, and immunoblot techniques.  相似文献   

7.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   

8.
We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.  相似文献   

9.
The plasma membrane of mammalian cells is one of the tight barriers against gene transfer by synthetic delivery systems. Various agents have been used to facilitate gene transfer by destabilizing the endosomal membrane under acidic conditions, but their utility is limited, especially for gene transfer in vivo. In this article, we report that the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide) greatly facilitates gene transfer via membrane destabilization. We constructed recombinant lambda phage particles displaying Tat peptide on their surfaces and carrying mammalian marker genes as part of their genomes (Tat-phage). We demonstrate that, when animal cells are briefly exposed to Tat-phage, significant expression of phage marker genes is induced with no harmful effects to the cells. In contrast, recombinant phage displaying other functional peptides, such as the integrin-binding domain or a nuclear localization signal, could not induce detectable marker gene expression. The expression of marker genes induced by Tat-phage is not affected by endosomotropic agents but is partially impaired by inhibitors of caveolae formation. These data suggest that Tat peptide will become a useful component of synthetic delivery vehicles that promote gene transfer independently of the classical endocytic pathway.  相似文献   

10.
To define the minimal peptide length needed for gene delivery into mammalian cells, we synthesized several peptides with shortened chain lengths from the amino-termini of the original amphiphilic peptides (4(6), Ac-LARL-LARL-LARL-LRAL-LRAL-LRAL-NH( 2,) and Hel 11-7, KLLK-LLLK-LWKK-LLKL-LK), which have been known to have gene transfer abilities into cells. Each synthetic peptide was studied for its ability to bind and aggregate with plasmid DNA and the structural change of the peptide caused by binding with the DNA to establish a relative in vitro gene transfection efficiency in COS-7 cells. As a result, the deletion of eight amino acid residues of 4(6) had little influence on their ability, whereas that of 12 amino acid residues remarkably reduced the abilities to make aggregates and transfer the DNA into the cell. In the case of the Hel 11-7 series peptides, deletion of amino acid residues caused a considerable reduction in abilities to bind and form aggregates with DNA and to transfer the DNA into cell in due order. In summary, 16 and 17 amino acid residues were sufficient to form aggregates with the DNA and transfer the DNA into the cells in the deletion series of 4(6) and Hel 11-7, respectively. Furthermore, it was indicated that reduction of membrane perturbation activity of the peptide-DNA complex due to deletion of the peptide chain length caused suppression of the transfection efficiency even if the complex was incorporated into the cells. Transfer of the complex to cytosol mediated by membrane perturbation activity of the peptide is an important step for efficient protein expression from its cDNA. The results of this study will make it easy to design and synthesize a functional gene carrier molecule such as a carbohydrate-modified peptide used in targeted gene delivery.  相似文献   

11.
The disaccharide trehalose is increasingly being used as a very efficient stabilizer of cells, membranes and macromolecules during cryo- and lyoconservation. Although extracellular trehalose can reduce cryo- and lyodamage to mammalian cells, the sugar is required on both sides of the plasma membrane for maximum protection efficiency. In the present study, mouse myeloma cells were loaded with the disaccharide by means of reversible electropermeabilization in isotonic trehalose-substituted medium, which contained 290 mM trehalose as the major solute. By using the membrane-impermeable fluorescent dye propidium iodide as the reporter molecule, optimum electropulsing conditions were found, at which most permeabilized cells survived and recovered (i.e., resealed) their original membrane integrity within a few minutes after electric treatment. Microscopic examination during the resealing phase revealed that electropulsed cells shrank gradually to about 60% of their original volume. The kinetics of the dye uptake and the volumetric response of cells to electropulsing were analyzed using a theoretical model that relates the observed cell volume changes to the solute transport across the transiently permeabilized cell membrane. From the best fit of the model to the experimental data, the intracellular trehalose concentration in electropulsed cells was estimated to be about 100 mM. This loading efficiency compares favorably to other methods currently used for intracellular trehalose delivery. The results presented here point toward application of the electropermeabilization technique for loading cells with membrane-impermeable bioprotectants, with far-reaching implications for cryo- and lyopreservation of rare and valuable mammalian cells and tissues.  相似文献   

12.
The development of the peptide-based vectors for the intracellular delivery of biologically active macromolecules has opened new prospects of their application in research and therapy. Earlier the amphipathic cell-penetrating peptide (CPP) Pep-1 was reported to mediate cellular uptake of proteins without covalent binding to them. In this work we studied the ability of a series of membrane-active amphipathic peptides, based on the gramicidin A sequence, to transport a model protein across the eukaryotic cell membrane. Among them the positively charged Cys-containing peptide P10C demonstrated the most effective β-galactosidase intracellular delivery. Besides, this peptide was shown to form noncovalent associates with β-galactosidase as judged from electrophoresis and enzymatic activity assays. In addition, a series of new gramicidin analogues were prepared and the effect of N-terminus modification of gramicidin on the protein transduction efficiency was studied.  相似文献   

13.
14.
Utilization of RNA interference (RNAi) for knockdown of gene expression has become a standard tool for the study of gene function. Short hairpin RNAs (shRNAs) expressed from RNA polymerase III promoters are widely used to achieve stable knockdown of gene expression by RNAi. We have constructed a retroviral-based shRNA expression vector, pSiRPG, as a tool for shRNA-based functional genomic studies. This vector is based on a widely used shRNA expression system and was modified to harbor an enhanced green fluorescent protein (EGFP) and a puromycin selection marker. The functionality of the elements in the pSiRPG vector was validated. The H1(TetO2) promoter in the vector facilitates doxycycline-inducible shRNA expression, which was demonstrated in cells expressing the Tet repressor (TetR). However, we also demonstrated limited efficiency of the inhibition of shRNA expression in an uninduced TetR-expressing cell line. This observation strongly indicates that the H1(TetO2) promoter, which is used in a wide range of vectors, is not optimal for tightly regulated shRNA expression. Stable repression of the NDRG1 protein level was observed when introducing pSiRPG constructs expressing shRNAs targeting NDRG1 into two mammary epithelial cell lines by retroviral delivery. This vector should therefore facilitate functional studies in breast cell lines that are hard to transfect with conventional plasmid-based methods.  相似文献   

15.
We report a Sendai virus (SeV) vector system for expression of major histocompatibility complex (MHC) class I/peptide complexes. We cloned the extracellular domain of a human MHC class I heavy chain, HLA-A*2402, and human beta-2 microglobulin (beta2m) fused with HLA-A*2402-restricted human immunodeficiency virus type 1 (HIV-1) cytotoxic T-lymphocyte (CTL) epitopes (e-beta2m) in separate SeV vectors. When we coinfected nonhuman mammalian cells with the SeVs, naturally folded human MHC class I/peptide complexes were secreted in the culture supernatants. Biotin binding peptide sequences on the C terminus of the heavy chain were used to tetramerize the complexes. These tetramers made in the SeV system recognized specific CD8-positive T cells in peripheral blood mononuclear cells of HIV-1-positive patients with a specificity and sensitivity similar to those of MHC class I tetramers made in an Escherichia coli system. Solo infection of e-beta2m/SeV produced soluble e-beta2m in the culture supernatant, and cells pulsed with the soluble protein were recognized by specific CTLs. Furthermore, when cells were infected with e-beta2m/SeV, these cells were recognized by the specific CTLs more efficiently than the protein pulse per se. SeV is nonpathogenic for humans, can transduce foreign genes into nondividing cells, and may be useful for immunotherapy to enhance antigen-specific immune responses. Our system can be used not only to detect but also to stimulate antigen-specific cellular immune responses.  相似文献   

16.
Basic peptide system for efficient delivery of foreign genes   总被引:3,自引:0,他引:3  
Certain peptides containing high percentage of cationic amino acids are known to efficiently translocate through the cell membrane. This principle was previously exploited for delivery of variety proteins. We had observed that various basic peptides of earlier studies, though not specifically use for gene delivery, contain DNA or RNA binding domains. In the present study, we reported on arginine peptides, which form DNA complexes that efficiently transfect various cell lines. The transfection abilities of the peptides were observed by green fluorescent protein (GFP) and beta-galactosidase gene expression in 293T, HeLa, Jurkat, and COS-7 cells. We found superior transfection activity of arginine peptides compared with commercially available efficient transfection agents. The expression of marker genes induced by arginine peptides was partially inhibited in the presence of heparan sulfate, chondroitin sulfate B and C, or both heparinase III and chondroitinase ABC. The transfection proficiency of these peptides was affected by endosomotropic reagent as well as low temperature (4 degrees C). Finally, we have investigated the potential of arginine peptides as a delivery agent for gene therapy, by attempting to deliver herpes simplex virus thymidine kinase (HSV-TK) gene into tumor cells. HSV-TK transfected tumor cells exhibited sensitivity to the antiviral drug ganciclovir (GCV), leading to cell death. Taken together, these data demonstrate that arginine peptide is proficient for transfection, indicating its potentially benefit to studies in gene therapy and gene delivery in a range of model organisms.  相似文献   

17.
Systemic treatment with antisense oligonucleotides is confounded by the dual problems of potential cytotoxicity of antisense oligonucleotides and carrier molecules such as cationic lipids. Treatment of pathologic conditions affecting the skin may avoid these problems to a large degree due to local application. The success of antisense strategies has been limited by the poor uptake of the transfection reagent and inadequate intracellular compartmentalization. Human skin epithelial cells, therefore, are attractive experimental tools for testing both in vitro and in vivo antisense therapies. In the present study, we determined commercially available liposomes which reproducibly induced a nontoxic increase of oligonucleotide uptake in cultured SZ95 sebocytes and keratinocytes. The final protocol for SZ95 sebocytes was a 4-hour incubation with DOTAP in a 2:1 (w/w) lipid/oligonucleotide ratio in serum-free medium. The fluorescein-labeled (ATCG)(5) random oligonucleotide molecules were detected within the nucleus. The optimum transfection system for primary keratinocytes was poly-L-ornithine (12 microg/ml) in a medium without bovine pituitary extract over 4 hours. The uptake of the oligonucleotide increased in the presence of the polycation and oligonucleotide molecules were localized in the cytoplasm of keratinocytes. Oligonucleotide transfection with the help of cationic lipids did not affect the expression of androgen receptor and of the house-keeping gene beta-actin. Thus, cationic lipids are useful for delivery of antisense oligonucleotides into skin cells in vitro and may be used for topical application on animal and human skin.  相似文献   

18.
Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号