首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we investigate cell survival after glucose deprivation and/or chemical hypoxia and we analyse the neuroprotective properties of selected antagonists of P2 ATP receptors. We find that in rat cerebellar granule neurones, the antagonist basilen blue prevents neuronal death under hypoglycaemia. Basilen blue acts through a wide temporal range and it retains its efficacy under chemically induced hypoxic conditions, in the presence of the respiratory inhibitors of mitochondria electron transport chain complexes II (3-nitropropionic acid) and III (antimycin A). In spite of the presence of these compounds, basilen blue maintains normal intracellular ATP levels. It furthermore prevents neuronal death caused by agents blocking the mitochondrial calcium uptake (ruthenium red) or discharging the mitochondrial membrane potential (carbonyl cyanide m-chlorophenylhydrazone). Inhibition of poly (ADP-ribose) polymerase, modulation of the enzyme GAPDH and mitochondrial transport of mono-carboxylic acids are not conceivable targets for the action of basilen blue. Survival is sustained by basilen blue also in CNS primary cultures from hippocampus and in PNS sympathetic-like neurones. Partial neuroprotection is furthermore provided by three additional P2 receptor antagonists: suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium and 4,4'-diisothiocyanatostilbene-2,2'disulphonic acid. Our data suggest the exploitation of selected P2 receptor antagonists as potential neuroprotective agents.  相似文献   

2.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

3.
Ouabain is Na(+)/K(+)-ATPase inhibitor and an endogenous regulator of blood pressure, it has dual effect on vascular endothelial cells(VEC) cell growth and VEC apoptosis is contributed to vascular dysfunction involved in vascular remolding. However, the precise mechanisms of apoptosis induced by ouabain remained unclear. The objective of this study was to identify the differently expressed proteins involved in VEC apoptosis induced by ouabain in order to explore cellular and subcellular mechanisms related to ouabain actions. Human umbilical vein endothelial cells (HUVEC) were exposed to increasing concentrations (0.1 nM to 10 microM) of ouabain at 12-48 h intervals. Cell viability tests revealed that high concentrations of ouabain inhibited cell growth. Flow cytometry and caspase-3 activity analysis confirmed that apoptosis was primarily responsible for ouabain induced cell death. Two-dimensional electrophoresis in conjunction with mass spectrometry revealed that the ouabain-induced apoptosis was accompanied by regulated expression of programmed cell death protein 6, cytochrome C1, endothelin converting enzyme, claudin-1, reticulon-4, galectin-1, ras-related protein rab-11B, calnexin, profilin-1 and heat shock protein 60 (HSP60). Further study on cytochrome c and HSP60 demonstrated that levels of mitochondria and cytosol cytochrome c and HSP60 changed in response to ouabain treatment. Data showed that mitochondria proteins such as HSP60 interferes with HSP60-Bax interactions played an important role in ouabain induced apoptosis. These data bring new sights into physiological role for ouabain in VEC apoptosis and vascular remodeling, thus provide new strategies for new anti-cardiovascular disease drug development or the identification of biomarkers for vascular dysfunction in ouabain related hypertension.  相似文献   

4.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

5.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. The aim of this study was to elucidate the mechanism of the novel Combretastatin A-4 derivative, 2-(furanyl)-5-(pyrrolidinyl)-1-(3,4,5-trimethoxybenzyl)benzoimidazole (FPTB)-induced human chondrosarcoma cells apoptosis. FPTB induced cell apoptosis in human chondrosarcoma cell line but not primary chondrocytes. FPTB induced up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. FPTB also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol-calcium levels. We found that FPTB increased glucose-regulated proteins (GRP)78 but not GRP94 expression. In addition, treatment of cells with FPTB induced calpain expression and activity. Transfection of cells with GRP78 or calpain siRNA reduced FPTB-mediated cell apoptosis. Therefore, FPTB-induced apoptosis in chondrosarcoma cells through the mitochondria dysfunction and involves caspase-9 and caspase-3-mediated mechanism. FPTB also induced cell death mediated by increasing ER stress, GPR78 activation, and Ca(2+) release, which subsequently triggers calpain, caspase-12 and caspase-3 activity, resulting in apoptosis.  相似文献   

6.
7.
Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.  相似文献   

8.
We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).  相似文献   

9.
Photoreceptor degeneration is the most critical cause of visual impairment in age-related macular degeneration (AMD). In neovascular form of AMD, severe photoreceptor loss develops with subretinal hemorrhage due to choroidal neovascularization (CNV), growth of abnormal blood vessels from choroidal circulation. However, the detailed mechanisms of this process remain elusive. Here we demonstrate that neovascular AMD with subretinal hemorrhage accompanies a significant increase in extracellular ATP, and that extracellular ATP initiates neurodegenerative processes through specific ligation of Purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7; P2X7 receptor). Increased extracellular ATP levels were found in the vitreous samples of AMD patients with subretinal hemorrhage compared to control vitreous samples. Extravascular blood induced a massive release of ATP and photoreceptor cell apoptosis in co-culture with primary retinal cells. Photoreceptor cell apoptosis accompanied mitochondrial apoptotic pathways, namely activation of caspase-9 and translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei, as well as TUNEL-detectable DNA fragmentation. These hallmarks of photoreceptor cell apoptosis were prevented by brilliant blue G (BBG), a selective P2RX7 antagonist, which is an approved adjuvant in ocular surgery. Finally, in a mouse model of subretinal hemorrhage, photoreceptor cells degenerated through BBG-inhibitable apoptosis, suggesting that ligation of P2RX7 by extracellular ATP may accelerate photoreceptor cell apoptosis in AMD with subretinal hemorrhage. Our results indicate a novel mechanism that could involve neuronal cell death not only in AMD but also in hemorrhagic disorders in the CNS and encourage the potential application of BBG as a neuroprotective therapy.  相似文献   

10.
Ca(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress. We conclude that GRP78 influences ER-mitochondrial Ca(2+) crosstalk to maintain mitochondrial function and protect astrocytes from ischemic injury.  相似文献   

11.
3-hydroxykynurenine (3HK), an endogenous metabolite of tryptophan in the kynurenine pathway, is a potential neurotoxin in several neurodegenerative disorders. Stabilizing protein structure, heat shock proteins (HSPs) have diverse roles as molecular chaperones to mediate stress tolerance. In the present study, we investigated the possible protective role of HSPs against 3HK induced neuronal cell death. Here we report that 3HK induced in a dose- and time-dependent manner neuronal cell death in neuroblastoma SK-N-SH cells. The cell death showed characteristic apoptotic features such as cell shrinkage, plasma membrane blebbing, chromatin condensation, and nuclear condensation and fragmentation. Furthermore, SK-N-SN cells were protected from 3HK induced cytotoxicity by prior elevation of HSPs expression. Our results show that the protective effect was abolished by HSP90 anti-sense oligonucleotides while not by HSP27 and HSP70 anti-sense oligonucleotides. Also, our result shows that HSP90 effectively inhibits caspases activities leading to the apoptosis. These results suggest that 3HK induces apoptosis in neuroblastoma SK-N-SN cells and that HSP90 is major contributing protein component of protection against 3HK induced apoptosis.  相似文献   

12.
利用重组戊型肝炎病毒(HEV)衣壳蛋白片段p239(368~606 aa)形成的类病毒颗粒作为亲和层析诱饵蛋白,HepG2为细胞模型,筛选与p239类病毒颗粒特异性相互作用蛋白。经过二维电泳分离,MALDI-TOF-MS分析鉴定得到GRP78/Bip,HSP90,alpha-tubulin及P43四个与p239有相互作用的候选蛋白。GRP78/Bip为热休克蛋白家族成员,体外免疫共沉淀实验结果证实,其与p239有特异性的结合。此研究结果为深入研究HEV的感染过程如吸附、入胞,以及HEV的致病机理提供了有益线索。  相似文献   

13.
Cardiolipin (CL) is a unique anionic phospholipid specific to the mitochondria. CL influences the activity of electron transport chain enzyme complexes as well as members of the Bcl-2 family. Interactions between Bcl-2 family members and other pro-apoptotic enzymes have been shown to be crucial for the transduction of the apoptotic signalling cascades during programmed cell death. Targeting of tBid to the mitochondria, which is necessary for Bax/Bak oligomerization and cristae remodelling, is dependent on the exposure of CL at contact sites between the inner and outer mitochondrial membranes. Also, the mobilization of cytochrome c, another key apoptotic event, is tightly regulated by the oxidative state of cardiolipin. Moreover, CL has been shown to be essential for translocation and autoprocessing of caspase-8 on the mitochondria after death receptor stimulation. Deficiencies in CL inhibit the formation of tBid and prevent apoptosis by removing an essential activation platform for the autoprocessing of caspase-8. It is now apparent that CL acts as a crucial signalling platform from which it orchestrates apoptosis by integrating signals from a variety of death inducing proteins.  相似文献   

14.
GRP94 is a 94-kDa chaperone glycoprotein with Ca(2+)-binding properties. We report here that during apoptosis induced by the topoisomerase II inhibitor etoposide, a fraction of GRP94 associated with the endoplasmic reticulum membrane undergoes specific proteolytic cleavage, coinciding with the activation of the caspase CPP32 and initiation of DNA fragmentation. In vivo, inhibitors of caspases able to block etoposide-induced apoptosis can only partially protect GRP94 from proteolytic cleavage, whereas complete inhibition is observed with calpain inhibitor I but not with the proteasome inhibitor. In vitro, GRP94 is not a substrate for CPP32; rather, it can be completely cleaved by calpain, a Ca(2+)-regulated protease. The cleavage of GRP94 by calpain is Ca(2+)-dependent and generates a discrete polypeptide of 80 kDa. In contrast, calpain has no effect on other stress proteins such as GRP78 or HSP70. Further, immunohistochemical staining reveals specific co-localization of GRP94 with calpain in the perinuclear region following etoposide treatment. We further showed that reduction of GRP94 by antisense decreased cell viability in etoposide-treated Jurkat cells. Our studies provide new evidence that the cytoprotective GRP94, as in the case of the antiapoptotic protein Bcl-2, can be targets of proteolytic cleavage themselves during the apoptotic process.  相似文献   

15.
Mammalian cells respond to stress by accumulating or activating a set of highly conserved proteins known as heat-shock proteins (HSPs). Several of these proteins interfere negatively with apoptosis. We show that the small HSP known as Hsp27 inhibits cytochrome-c-mediated activation of caspases in the cytosol. Hsp27 does not interfere with granzyme-B-induced activation of caspases, nor with apoptosis-inducing factor-mediated, caspase-independent, nuclear changes. Hsp27 binds to cytochrome c released from the mitochondria to the cytosol and prevents cytochrome-c-mediated interaction of Apaf-1 with procaspase-9. Thus, Hsp27 interferes specifically with the mitochondrial pathway of caspase-dependent cell death.  相似文献   

16.
Deranged Ca(2+) signaling and an accumulation of aberrant proteins cause endoplasmic reticulum (ER) stress, which is a hallmark of cell death implicated in many neurodegenerative diseases. However, the underlying mechanisms are elusive. Here, we report that dysfunction of an ER-resident Ca(2+) channel, inositol 1,4,5-trisphosphate receptor (IP(3)R), promotes cell death during ER stress. Heterozygous knockout of brain-dominant type1 IP(3)R (IP(3)R1) resulted in neuronal vulnerability to ER stress in?vivo, and IP(3)R1 knockdown enhanced ER stress-induced apoptosis via mitochondria in cultured cells. The IP(3)R1 tetrameric assembly was positively regulated by the ER chaperone GRP78 in an energy-dependent manner. ER stress induced IP(3)R1 dysfunction through an impaired IP(3)R1-GRP78 interaction, which has also been observed in the brain of Huntington's disease model mice. These results suggest that IP(3)R1 senses ER stress through GRP78 to alter the Ca(2+) signal to promote neuronal cell death implicated in neurodegenerative diseases.  相似文献   

17.
Mercuric chloride (HgCl2) induces acute renal failure associated to tubular impairment in experimental animals and humans. Stress proteins are a superfamily of proteins, comprising heat- shock proteins (HSP) and glucose-regulated proteins (GRP), enhanced or induced in the kidney in response to stress. They act as molecular chaperones that protect organelles and repair essential proteins which have been denatured during adverse conditions. The involvement of stress proteins in mercury-nephrotoxicity has not yet been well clarified. This study was undertaken to detect the tubular distribution of four stress proteins (HSP25, HSP60, GRP75, HSP72) in the rat kidney injected with HgCl2 and to quantify lysosomal and mitochondrial changes in straight proximal tubules, the main mercury target. Sprague-Dawley rats were administered i.p. with progressive sublethal doses of HgCl2 (0.25 mg/kg, 0.5 mg/kg, 1 mg/kg and 3.5 mg/kg) or saline (as controls) and sacrificed after 24 h. In dosages over 0.50 mg/kg, stress proteins increased and changed localization in a dose-dependent manner. HSP25 was focally expressed in altered proximal tubules at 1 mg/kg but in the macula densa it was at 3.5 mg/kg. HSP60 and GRP75 were intense in the nucleus and cytoplasm of proximal tubules but moderate in distal tubules. HSP72 was induced in distal tubules after low exposures but in proximal tubules it happened at the highest dose. Moreover, a significant increase in lysosomal and total mitochondria (normal and with broken cristae) area and density were progressively found after HgCl2 treatments. Stress proteins could represent sensitive biomarkers that strongly correlate with the degree of oxidative injury induced by HgCl2 in the rat proximal tubules.  相似文献   

18.
Huang YH  Chang AY  Huang CM  Huang SW  Chan SH 《Proteomics》2002,2(9):1220-1228
We employed rat pheochromocytoma PC12 cells as our model system to identify cellular proteins that accompany Escherichia coli lipopolysaccharide (LPS)-induced apoptosis, based on a proteomic approach. Cell viability tests revealed that na?ve PC12 cells underwent cell death in a dose-dependent manner after treatment with LPS. Flow cytometric analysis confirmed that apoptosis was primarily responsible for the observed cell death. Two-dimensional electrophoresis in conjunction with N-terminal sequencing, immunoblot, matrix-assisted laser desorption/ionization-time of flight analysis or computer matching with protein databases further revealed that the LPS-induced apoptosis is accompanied by an augmented level of calreticulin, calcium binding protein 50, endoplasmic reticulum protein 60 (ERP60), heat shock protein 60 (HSP60) or HSP90, and a reduced level of amphoterin, cytochrome c oxidase polypeptide VIa-liver or ERP29. These proteins are associated with endoplasmic reticulum, mitochondria or cell membrane, and are with known or potential roles in apoptosis. Their identification therefore provides an impetus for further delineation of the cellular and molecular basis of apoptotic cell death and sepsis based on proteomic profiling of PC12 cells.  相似文献   

19.

Background  

Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM).  相似文献   

20.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) are aberrantly up-regulated in colon cancer. When expressed, they act as morphogens, retaining tumor cells in a better differentiated state and retarding metastasis. To identify targets activated in response to GRPR signaling we studied Caco-2 and HT-29 cells, colon cancer cell lines that expresses GRPR as a function of confluence. Total cell protein was extracted from pre-confluent cells (expressing GRP/GRPR) cultured in serum-free media in the presence or absence of GRPR-specific antagonist; as well as from confluent cells that do not express GRPR. Overall, we identified 5 proteins that are specifically down-regulated after GRP/GRPR expression: Bach2, creatine kinase B, p47, and two that could not be identified; and 6 proteins that are up-regulated: gephyrin, HSP70, HP1, ICAM-1, ACAT, and one that could not be identified. These findings suggest that the mechanism(s) by which GRP/GRPR mediate its morphogenic effects in colon cancer involve the actions of a number of hitherto unappreciated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号