首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mucopolysaccharides produced by B16 mouse melanoma cells have been isolated in milligram quantities from the spent media in which the cells were grown in the presence of 2-amino-2-deoxy-d-glucose-t and 35S]-sulfate. The mucopolysaccharides obtained by precipitation with cetylpyridinium chloride from the Pronase digest of the media were further purified by gel filtration, ion-exchange chromatography, and treatment with nucleases. The major components were identified as chondroitin-4-sulfates by identification of the hexosamine as 2-amino-2-deoxy-d-galactose, and by digestibility with hyaluronidases, chondroitinase AC, and chondro-4-sulfatase. The o.r.d. curve and i.r. spectra of these components also confirmed their similarity to chondroitin-4-sulfate from cartilage. The molecular weight of the polysaccharide chains was estimated to be in the range 90,000–120,000 by sedimentation equilibrium analysis.  相似文献   

2.
Bufalin, which is one of prominent components of Chinese toad venom, was found to decrease the rate of cell proliferation of mouse melanoma clone B16-F10 cells and a concomitant stimulation of expression of its melanotic phenotype. The effect of bufalin on melanogenesis included stimulation of tyrosinase activity and increase of cellular melanin content. These effects became apparent after 48 hr exposure to 10(-4) M bufalin and increased thereafter. Other cardiotonic steroids, such as cinobufagin and ouabain, at the concentration of 10(-4) M for 6 days, also showed the stimulatory effect on melanin synthesis of B16-F10 cells, but not digitoxigenin.  相似文献   

3.
Melanogenesis is regulated by a variety of environmental and hormonal factors. In this study, we showed that protein kinase C (PKC) plays a major role in regulating melanogenesis in B16 mouse melanoma cells. Chronic treatment of B16 cells with phorbol dibutyrate resulted in a concentration-dependent loss of density-dependent induction of tyrosinase activity, which correlated positively with a concentration-dependent loss of PKC enzyme activity. In contrast, B16 clones overexpressing PKCα had increased tyrosinase activity. Different phorbol derivatives inhibited tyrosinase activity and depleted cellular PKCα in a manner that reflected their reported tumor-promoting activity. Western blotting analysis showed that phorbol dibutyrate decreased the amount of the brown locus gene product (TRP-1) by 50% and lowered the amount of the albino locus gene product (tyrosinase) to undetectable levels. None of the phorbol derivatives affected the level of the slaty locus protein (TRP-2). The decrease in tyrosinase and TRP-1 protein levels was found to be due to a decrease in the mRNA encoded by these genes. In addition to inhibiting the density-dependent increase in tyrosinase activity, phorbol dibutyrate inhibited some, but not all, of the 8-bromocyclic AMP-induced increase in tyrosinase activity. This was accompanied by a decrease in the amount of tyrosinase protein induced by 8-bromocyclic AMP. Although 8-bromocyclic AMP did not change the level of TRP-1, it did reverse the decrease in the amount of this protein induced by phorbol dibutyrate. The amount of TRP-2 was not altered by any of these agents. These data suggest that PKC regulates melanogenesis primarily by controlling the constitutive expression of tyrosinase and, to a lesser extent, TRP-1. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In the current study, the involvement of calpain, a cysteine proteinase in the regulation of melanogenesis was examined using mouse B16 melanoma cells. In response to α-melanocyte-stimulating hormone (α-MSH), B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. The total calapain activity was decreased within 2 h following α-MSH-treatment, and restored to the initial level in 6–12 h. To further investigate the involvement of calpain in the regulation of melanogenesis, the effect of calpain inhibitors on α-MSH-induced melanogenesis was examined. Inhibition of calpain by either N-acetyl-Leu-Leu-norleucinal (ALLN) or calpastatin (CS) peptide blocked α-MSH-induced melanogenesis. The magnitude of inhibition of melanin biosynthesis was well correlated with a decrease in the activity of tyrosinase, a key regulatory enzyme in melanogenesis. Treatment of B16 cells with ALLN caused marked decrease in both tyrosinase protein and mRNA levels. These results indicate that calpain would be involved in the melanogenic signaling by modulating the expression of tyrosinase in mouse B16melanoma cells.  相似文献   

5.
p-Coumaric acid (4-hydroxycinnamic acid) and methyl p-coumarate (methyl 4-hydroxycinnamate) inhibit the oxidation of L-tyrosine catalyzed by mushroom tyrosinase. However, both were oxidized as monophenol substrate analogues at an extremely slow rate. This oxidation was significantly accelerated as soon as catalytic amounts (0.01 mM) of L-3,4-dihydroxyphenylalanine (L-DOPA) became available as a co-factor. Methyl p-coumarate significantly suppressed the melanin formation in B16 mouse melanoma cells, whereas p-coumaric acid did not show this activity.  相似文献   

6.
Naringenin is a naturally occurring citrus flavanone. In this study, we examined the effect of naringenin on melanogenesis in mouse B16 melanoma cells. Melanin contents and tyrosinase activities were strongly increased by naringenin. Naringenin was found to cause marked increases in the expression levels of melanogenic enzymes.  相似文献   

7.
Heparan sulfate (HS), a prominent component of vascular endothelial basal lamina, is cleaved into large Mr fragments and solubilized from subendothelial basal lamina-like matrix by metastatic murine B16 melanoma cells. We have examined the degradation products of HS and other purified glycosaminoglycans produced by B16 cells. Glycosaminoglycans 3H-labeled at their reducing termini or metabolically labeled with [35S]sulfate were incubated with B16 cell extracts in the absence or presence of D-saccharic acid 1,4-lactone, a potent exo-beta-glucuronidase inhibitor, and glycosaminoglycan fragments were analyzed by high speed gel permeation chromatography. HS isolated from bovine lung, Engelbreth-Holm-Swarm sarcoma, and subendothelial matrix were degraded into fragments of characteristic Mr, in contrast to hyaluronic acid, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan sulfate, keratan sulfate, and heparin which were essentially undegraded. Heparin, but not other glycosaminoglycans, inhibited HS degradation. The time dependence of HS degradation into particular Mr fragments indicated that HS was cleaved at specific intrachain sites. In order to determine specific HS cleavage points, HS prereduced with NaBH4 was incubated with a B16 cell extract and HS fragments were separated. The newly formed reducing termini of HS fragments were then reduced with NaB[3H]4, and the fragments hydrolyzed to monosaccharides by trifluoroacetic acid treatment and nitrous acid deamination. Since 3H-reduced terminal monosaccharides from HS fragments were overwhelmingly (greater than 90%) L-gulonic acid, the HS-degrading enzyme responsible is an endoglucuronidase (heparanase).  相似文献   

8.
9.
Polysaccharide production by cultured B-16 mouse melanoma cells   总被引:3,自引:0,他引:3  
  相似文献   

10.
The effects of fourteen metal ions (As3+, As5+, Cd2+, Co2+, Cr3+, Cr6+, Hg2+, Li+, Mg2+, Mn2+, Ni2+, Se4+, V5+, VO2+) on the proliferation and differentiation in mouse B16 melanoma cells cultivated in vitro were analyzed. Cell number assays, melanin, and protein measurements, a 3(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide reduction test (MTT survival test), and a clonal growth assay were performed. At 10−4 M, metal ions such as As3+, As5+, Cd2+, Cr6+, Se4+, V5+, VO2+, and, to a minor extent, Li+, Hg2+, and Co2+ significantly reduced the number of the B16 melanoma cells. For the same molar concentration, the order of the levels of cell toxicity of the metal compounds to B16 cells as measured by the MTT test was as follows: Hg2+>Cr6+=Cd2+>As3+, As5+>V5+, VO2+>Se4+=Ni2+=Co2+=Li+. An increased synthesis of melanin in B16 cells was noted after incubation with Co2+, Ni2+, Cd2+, and Li+, whereas Se4+ had, on the contrary, an inhibiting effect on melanogenesis.  相似文献   

11.
In response to alpha-melanocyte-stimulating hormone (alpha-MSH) or cAMP-elevating agents (forskolin and isobutylmethylxanthine), mouse B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. However, the mechanism(s) underlying the regulation of melanogenesis during differentiation has not yet been clearly understood. Phospholipase D (PLD) has been reported to be involved in differentiation. This enzyme cleaves phosphatidylcholine upon stimulation with stimuli to generate phosphatidic acid. In the current study, the involvement of PLD in the regulation of melanogenesis characteristic of differentiation was examined using mouse B16 melanoma cells. Treatment of B16 cells with alpha-MSH was found to cause marked decreases in the PLD1 activity concurrent with its reduced protein level. Moreover, treatment of exogenous bacterial PLD also inhibited alpha-MSH-induced melanogenesis. To further investigate the role of PLD1 in the regulation of melanogenesis, we examined the effects of overexpression of PLD1 on melanogenesis in B16 melanoma cells. The B16 cells overexpressing PLD were prepared by transfection with the vector containing the cDNA encoding PLD1. The melanin contents in PLD1-overexpressing cells (B16/PLD1) were observed to be lower compared with those in the vector control cells (B16/Vec), concomitant with the decreases in both activity and protein level of tyrosinase, a key regulatory enzyme in melanogenesis. Moreover, overexpression of PLD1 resulted in a marked inhibition of melanogenesis induced by alpha-MSH. The inhibition of melanogenesis was well correlated with the decrease in the tyrosinase activity associated with its expression. These results indicated that PLD1 negatively regulated the melanogenic signaling by modulating the expression of tyrosinase in mouse B16 melanoma cells.  相似文献   

12.
We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.  相似文献   

13.
As we showed earlier, side population (SP) cells are more resistant to low-LET radiation than the rest of mouse melanoma B16 cells (Matchuk et al., 2012). The goal of this study was elucidation of some mechanisms of radioresistance; therefore, we analyzed the SP and non-SP cell-cycle distribution, spontaneous and radiation-induced DNA double-strand breaks (the number of γ-H2AX foci), and intracellular NO concentration. The obtained results indicate that SP cells have a significantly lower number of double-strand DNA breaks after irradiation at a dose of 3 Gy than do non-SP cells (24.4 vs. 40.3, respectively, p < 0.05, Mann-Whitney U-test). The SP cells are more quiescent than are non-SP ones (the G1/G0-fraction is 85 vs. 39%, respectively, p < 0.01). Most non-SP cells are in the S or G2/M phases (61%), which are believed to be rather radiosensitive. Thus, the difference between the SP and non-SP cell radiosensitivity can be partly explained by peculiarities of the cell cycle distribution. The NO concentration is 1.5 times higher in the SP than in the non-SP cells (p < 0.05); since it is known that NO inhibits apoptosis, being one of the mechanisms of genetic stability maintenance, that there is a higher number of the spontaneous double-strand DNA breaks in the SP cells is not surprising (p < 0.05). The above-given results to a certain extent explain the higher resistance of the SP cells to low-LET radiation in comparison with the non-SP cells. Further study of this problem may become the basis for development of tools to target SP cells and, eventually, for more effective treatment of oncological diseases.  相似文献   

14.
15.
Whisky exerts an inhibitory effect on melanogenesis in B16 cells, the anti-melanogenic activity being positively correlated with the aging period and anti-oxidative activity of whisky. We examined the correlation between the inhibition of melanogenesis and the concentration of each compound in various whiskies to evaluate the importance of 11 different whisky polyphenols, including ellagic acid, gallic acid and lyoniresinol, in the anti-melanogenic activity of whisky. The concentration of all the compounds was positively correlated with the anti-melanogenic activity of whisky. Ellagic acid, gallic acid and lyoniresinol were the predominant polyphenols in the whiskies measured by HPLC. These three compounds also significantly inhibited the melanogenesis and tyrosinase activity in B16 cells. Ellagic acid, gallic acid and lyoniresinol were confirmed as the major participants in the anti-melanogenic activity of whisky.  相似文献   

16.
The N-linked sugar chains of metastasizing mouse B16 melanoma cells (F1) and their wheat germ agglutinin-resistant variant (Wa4-b1) showing a dramatic decrease in metastasizing and tumorigenic potentials were liberated from their membrane glycoproteins by hydrazinolysis, and their structures were comparatively analysed. The results indicated that both cell lines contain high-mannose-type and bi-, tri- and tetraantennary complex-type oligosaccharides, and their ratios are similar. However, outer chain moieties of tri- and tetraantennary oligosaccharides of the variant are extensively fucosylated, resulting in the formation of X-antigenic determinants, Gal beta 1----4(Fuc alpha 1----3)GlcNAc. Oligosaccharides containing X-antigenic determinants amounted to 71% of the total complex-type oligosaccharides. Fucosylation occurs on every N-acetyllactosamine unit and the number of the determinants ranges from one to three in triantennary oligosaccharides and one to four in tetraantennary oligosaccharides. The determinants occur predominantly in non-sialylated forms, although some are in sialylated forms. Oligosaccharides containing non-sialylated X-antigenic determinants and those containing sialylated X-antigenic determinants are approximately in the ratio 6:1. Since no significant difference was found in the extent of branching of complex-type oligosaccharides of the two cell lines, it is suggested that non-fucosylated outer chains are important for the expression of metastasizing potential by the tumour cells.  相似文献   

17.
Induction of transient thermotolerance by heat or other cytotoxic stressors has been reported to confer a moderate degree of drug resistance to tumor cells in vitro. In this study, a genetically stable, heat-resistant mouse B16 melanoma variant (W-H75) was tested for its sensitivity to various cytotoxic and antiproliferative agents. The heat-resistant W-H75 cells displayed a moderate two- to threefold resistance to doxorubicin, VP-16, VM-26, colchicine, cis-dichlorodiammineplatinum(II), HgCl2, and CdCl2. Marginal resistance to 4'(9-acridinylamino)methanesulfon-m-anisidide vinblastine, 1,3-bis(2-chloroethyl)-1-nitro-sourea, and NaAsO2 was observed, while no difference in sensitivity to the anticancer drugs, actinomycin D and camptothecin, was observed. Although W-H75 cells were generally more resistant than the parental cells to most of the agents that were tested, they were collaterally sensitive to the antimetabolites methotrexate and 6-mercaptopurine. Resistance of the W-H75 cells to epipodophyllotoxins and anthracyclines was not due to differences in steady-state drug accumulation. For the epipodophyllotoxin VP-16, resistance may be related to a relative decrease in the number of drug-induced DNA strand breaks in W-H75 cells. However, no difference in DNA strand breakage was observed between W-H75 and parental cells which were treated with doxorubicin, suggesting that resistance to this drug occurred by a different mechanism. The possible involvement of glutathione and glutathione S-transferase in resistance was also investigated. The glutathione content in W-H75 cells was 35% higher than that in the parental line. However, glutathione S-transferase activity appeared to be identical in both cell lines. Two other heat-resistant B16 melanoma variants, B-H103 and R-H92, were also tested for sensitivity to doxorubicin and VP-16. In contrast to the W-H75 cells, these two heat-resistant variants were hypersensitive to doxorubicin. The B-H103 cells were also hypersensitive to VP-16. This study suggests that selection for cellular resistance to heat may result in cells that have an altered sensitivity to drugs.  相似文献   

18.
Metastatic mouse models of melanoma have been characterized by gross necropsy examination, histopathology, and optical imaging. To determine if the time progression, extent, and metabolism of melanoma metastases could be monitored noninvasively, serial micro-CT and small-animal PET imaging studies were performed by using a mouse model of melanoma. Juvenile female C57BL/6 mice were injected intravenously with syngenic B16-F10 melanoma cells. Serial micro-CT imaging studies were performed on anesthetized mice. Mice were necropsied at the development of adverse clinical signs or at postinjection Day 30, and tissues were collected for histopathology. In a separate study of four mice, tumor viability was assessed with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and studied by using small-animal PET imaging. A total of 59% of the mice developed metastatic tumors. Micro-CT image analysis was able to identify and follow up to 36% of metastatic lesions. Examples of metastatic lesions identified and followed up by micro-CT imaging included a lung metastasis, mandibular metastasis, subcutaneous metastasis, and tibial/femoral metastasis. Micro-CT and small-animal PET fusion imaging successfully correlated anatomic localization of glucose metabolism of the metastatic tumors. Micro-CT and small-animal PET imaging were found to be highly effective in detection and characterization of lesions produced by this metastatic melanoma model.  相似文献   

19.
Cultured murine B16 melanoma cells normally grow as spindle-shaped cells firmly attached to tissue culture flasks. Pellets obtained from harvested B16 melanoma cells are white to grey in color. When the same cells were grown in synthetic, serum-free AIM V medium, cellular morphology and pigmentation were radically altered. Within 3 days of subculture in AIM V, cells rounded up and grew in clusters in suspension. Melanin content increased to greater than 30 times and tyrosinase activity was found to be 10-50 times higher in cells grown in AIM V medium compared to those cultured in normal medium. A concomitant increase in the level of immunoreactive tyrosinase was also induced. The individual growth factors and hormones present in AIM V medium were examined to determine which component(s) stimulates melanogenesis. Only those cells grown in the presence of 2.5% human albumin were stimulated to synthesize melanin. These findings suggest that albumin, or a component associated with albumin, has a major effect upon the regulation of melanogenesis in these cells.  相似文献   

20.
During migration, tumour cells interact with neighbouring neoplastic and normal host cells, and such interaction may influence their motile activity. We investigated the effect of homotypic collisions on the motile activity of two tumour cell lines, mouse melanoma B16 and rat sarcoma XC, and nontransformed human skin fibroblasts. It was found that the tumour cells show only limited motile activity when moving as single cells without contact with neighbours. At a higher density of the culture (and also at a greater number of cell to cell contacts) the activation of motility of investigated tumour cells was observed. On the other hand, the normal human skin fibroblasts showed a typical reaction of density-dependent inhibition of motility. The motile activity of tumour cells was not affected by conditioned media and was visibly dependent on a direct physical contact among colliding cells. The activation of cell movement was observed about 40-50 min after the initial contact between tumour cells. Contact-activated migration of neoplastic cells was inhibited by 50 microM verapamil (a selective voltage-gated calcium channel inhibitor) and 10 microM gadolinium chloride (a nonspecific blocker of mechanosensitive ion channels) but not by pertussis toxin. The observation that homotypic collisions among tumour cells strongly increase their motile activity suggests that contact-activated migration may play a significant role in tumour invasion and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号