首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Slices of electric organ of Torpedo marmorata were chopped and incubated in a saline-urea-sucrose medium. This preparation of minced tissue exhibited a relative enrichment in ACh and nerve endings, which was attributed to a loss of electroplaque cytoplasm. Electron microscopic controls showed nerve endings of normal morphology, some of them forming 'chaplets' separated from electro-plaques. Miniature endplate potentials were recorded on sealed fragments also present in this preparation. ACh levels remained unchanged during incubation periods as long as 19 h. The time course of the incorporation of [1-14C]acetate of [2-14C]pyruvate into ACh pools was studied. These incorporations were similarly affected by the choline added to the medium. In the presence of increasing choline concentrations (up to 10-4 m ), the incorporation of [14C]acetate or [14C]pyruvate into ACh increased. They both diminished when choline was added above 10-4M. The ACh content of the tissue was not affected by added choline. From the constancy of ACh levels in the presence of various choline concentrations and from the steady state of our preparation, we can conclude that the release of transmitter varied in parallel to the incorporation rate of the precursor of the acetyl moiety of ACh. This fact was also found using the efflux of [14C]acetate as an evaluation of ACh release. The values of release calculated by this method were in good agreement with those determined from the incorporations of acetate and pyruvate into ACh. It is suggested that the primary action of choline is on its high affinity carrier system. This triggers a secondary action on the ACh release mechanisms.  相似文献   

2.
ACETYLCHOLINE METABOLISM AND CHOLINE UPTAKE IN CORTICAL SLICES   总被引:4,自引:6,他引:4  
Abstract— The uptake of [14C]choline was studied in cortical slices from rat brain after their incubation in a Krebs-Henseleit medium containing either 4.7 m m -KCl (low K), 25 m m -KCl (high K) or 25 m m -KCl without calcium (Ca free, high K). With 0.84 μ m -[14C]choline in the medium the uptake per gram of tissue was 0.62 nmol after incubation in low K medium, 1.13 nmol after incubation in high K medium and 0.78 nmol after incubation in a Ca free, high K medium. The differences caused by potassium were greater in fraction P2 than in fractions P1 and S2. With 17 and 50 μ m -[14C]choline in the medium greater amounts of [14C]choline were taken up, but the effect of potassium on the uptake almost disappeared. The amount of radioactive material in fraction P2 followed Michaelis-Menten kinetics with K m values of 2.1 and 2.3 μ m after incubation in low and high K medium, respectively. Hemicholinium-3 only slightly inhibited choline uptake from a medium with 0.84 μ m -[14C]choline, but it abolished the extra-uptake induced by high K medium. The radioactivity in the slices consisted mainly of unchanged choline and little ACh was formed after incubation in low K medium, but after incubation in high K medium 50% of the choline taken up was converted into ACh. The hemicholinium-3 sensitive uptake of choline, the conversion of choline into ACh and the synthesis of total ACh, were stimulated about 7–8-fold by potassium. It is concluded that in cortical slices from rat brain all choline used for the synthesis of ACh is supplied by the high-affinity uptake system, of which the activity is geared to the rate of ACh synthesis.  相似文献   

3.
Abstract— Choline acetyltransferase from bovine brain has been extensively purified to a specific activity of 2.5 μmol ACh/min mg protein. Attempts to isolate an acetyl enzyme intermediate after incubation of the enzyme with [1-14C]acetyl-CoA were unsuccessful. Such an intermediate could only be isolated using a 30-fold less purified enzyme preparation. The protein, binding 14C in this preparation, did not correspond to choline acetyltransferase as shown by disc-electrophoresis. The highly purified enzyme could, however, be labelled when choline acetyltransferase was immobilized on a mercuribenzoate sepharose gel and incubated with [1-14C]acetyl-CoA. Subsequently, the immobilized labelled enzyme or the labelled enzyme which had been released by cysteine from the gel. formed ACh after incubation with choline. The labelling and the following formation of [14C]ACh was pH dependent.
Masking htstidine residues of the enzyme with diethylpyrocarbonate almost abolished the labelling of the immobilized enzyme and completely abolished the formation of [14C]ACh. Enzyme inhibited with 5.5'-dithiobis(2-nitrobenzoate) was partially reactivated when the thionitrobenzoatederivative was cleaved by KCN treatment to a thiocyanatederivalive. A reaction mechanism for ChAT is proposed based on the present data.  相似文献   

4.
Abstract: Slices of rat caudate nucleus were incubated in a solution of 123 mM-NaCl, 5 mM-KCl, 1.2 mM-MgCl2, 1.2 mM-NaH2PO4, 25 mM-NaHCO3, 0.2 mM-choline chloride, 0.058 mM-paraoxon, 1 mM-EGTA, and oxidizable substrates. (−)-Hydroxycitrate, a specific inhibitor of ATP-citrate lyase (EC 4.1.3.8), used at a concentration of 2.5 mM, inhibited the synthesis of acetylcholine (ACh) from [1,5-14C]citrate by 82–86%, but that from [U-14C]glucose by only 33%, from [2-14C]pyruvate by 24% and from [1-14C-acetyl]carnitine by 8%; the production of 14CO2 from these substrates was not substantially changed. The synthesis of ACh from glucose and pyruvate was in hibited also by citrate; 2.5 mM- and 5 mM-citrate diminished it by 43% and 66%, respectively; the production of from [U-14C]glucose and from [1-14C]pyruvate was not affected. The mechanism of the inhibitory effect of citrate on the synthesis of ACh is not clear; the possibility is discussed that citrate alters the intracellular milieu in cholinergic neurons by chelating the intracellular Ca2+ and decreases the supply of mitochondrial acetyl-CoA to the cytosol. The results with (−)-hydroxycitrate indicate that the cleavage of citrate by ATP-citrate lyase is not responsible for the supply of more than about one-third of the acetyl-CoA which is used for the synthesis of ACh when glucose or pyruvate are the main oxidizable substrates. This proportion may be even smaller, since (−)-hydroxycitrate possibly affects the synthesis of ACh from glucose and pyruvate by a mechanism (unknown) similar to that of citrate, rather than by the inhibition of ATP-citrate lyase.  相似文献   

5.
Abstract— In the lobster nerve the fixation of CO, at various levels of pCO2 was studied by the incorporation of [l-14C]pyruvate. Incorporation of 14C was solely dependent on CO2 fixation since the C-1 was decarboxylated in the formation of acetyl-CoA. Paired-nerve studies with [2-14C]pyruvate afforded a study of pyruvate metabolism in the lobster nerve. [I14C]Pyruvate was incorporated to nearly the same extent at all levels of pCO2 including zero pCO2, a finding that suggested metabolic recycling of CO2. The magnitude of the metabolic recycling of C-1 of pyruvate or pyruvate dismutation was estimated to be nearly 20 per cent of total CO2 fixation. Re-evaluation of the relative contributions of the CO2 fixation. and acetyl-CoA pathways on the basis of more extensive data gave a ratio of 2:3.
The pCO2 affected synthesis of ACh and the level of citrate. With increasing pCO2, the specific radioactivity of ACh decreased much more than the content of ACh. The decrease in the specific radioactivity of ACh but not that of citrate further suggested metabolic compartmentation. The implication of these findings is discussed.
Alanine functioned as a metabolic sink for the incorporated pyruvate. Pyruvate levels were estimated to be approximately 0.1 nmol/mg of protein.  相似文献   

6.
Abstract: Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14C]acetate or [1-14C]propionate, and the synthesis, storage, and release of [1-14C]acetylcholine and [14C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14C]acetylcholine and [14C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 m M KCI released much less [14C]propionylcholinc than [14C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3H]choline and [14C]propionate.  相似文献   

7.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

8.
Abstract: The effect of chronic low-level lead (Pb2+) ingestion on the metabolic pathways leading to the acetyl moiety of acetylcholine (ACh) was examined. Cerebral cortex slices, prepared from untreated or Pb2+-exposed rats (600 ppm lead acetate in the drinking water for 20 days), were incubated in Krebs-Ringer bicarbonate buffer with 10 m M glucose and tracer amounts of [6-3H]glucose and either [6-14C]glucose or [3-14C] β -hydroxybutyrate. Altering the concentration of Pb2+ in the drinking water produced a dose-related increase in blood and brain lead levels. When tissue from Pb2+-exposed rats was incubated with mixed-labeled glucose, incorporation into lacate, citrate, and ACh was considerably decreased, although no changes occurred in the 3H/14C ratios. Similar effects of Pb2+ were found when 14C-labeled β -hydroxy-butyrate was substituted for the [14C]glucose. It appears from these data that Pb2+ exerts a generalized effect on energy metabolism and not on a specific step in glucose metabolism. The impairment of glucose metabolism may explain partially the Pb2+-induced changes observed in cholinergic function.  相似文献   

9.
Abstract: The metabolism of [2-13C]glycine in astrogliarich primary cultures obtained from brains of neonatal Wistar rats was investigated using 13C NMR spectroscopy. After a 24-h incubation of the cells in a medium containing glucose, glutamate, cysteine, and [2-13C]glycine, cell extracts and incubation media were analyzed for 13C-labeled compounds. Labeled creatine, serine, and glutathione were identified in the cell extracts. If arginine and methionine were present during the incubation with [2-13C]glycine, the amount of de novo synthesized [2-13C]creatine was two-fold increased, and in addition, 13C-labeled guanidinoacetate was found in cell extracts and in the media after 24 h of incubation. A major part of the [2-13C]glycine was utilized for the synthesis of glutathione in astroglial cells. 13C-labeled glutathione was found in the cell extracts as well as in the incubation medium. The presence of newly synthesized [2-13C]serine, [3-13C]serine, and [2,3-13C]serine in the cell extracts and the incubation medium proves the capability of astroglial cells to synthesize serine out of glycine and to release serine. Therefore, astroglial cells are able to utilize glycine as a precursor for the synthesis of creatine and serine. This proves that at least one cell type of the brain is able to synthesize creatine. In addition, guanidinoacetate, the intermediate of creatine synthesis, is released by astrocytes and may be used for creatine synthesis by other cells, i.e., neurons.  相似文献   

10.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

11.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

12.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

13.
Abstract— Glucose metabolism in the superior cervical ganglion for calves has been studied by incubating slices with [1-14C]-, [6-14C]- and [U-14C]-labelled glucose at 37°C and pH 7.4. Glucose utilization and the metabolic partitioning of glucose carbon in products during different incubation periods ranging from 5 to 60 min were determined by isotopic methods.
Separation and identification of labelled compounds have been achieved by anion and cation exchange chromatography as well as by TLC and enzymatic analyses.
From the data obtained a carbon balance could be constructed showing lactate to be the major product of glucose metabolism followed by CO2 and amino acids. Measuring the release of 14CO2 from differently 4C-labelled glucose, the existence of an active pentose phosphate pathway in the ganglion could be demonstrated although this pathway seems to contribute only to a small extent to glucose metabolism. The marked decrease of the C-U: C-6 and the C-U:C-1 ratios in 14CO2 observed in the course of incubation is discussed in terms of a time-dependent change in the rate of synthesis of amino acids which are directly connected with intermediates of the citric acid cycle.  相似文献   

14.
Abstract— Free choline and acetylcholine (ACh) in mouse or rat brain were assayed biologically. The subcellular distribution of ACh in brain slices that had been incubated in the presence of eserine was compared to that in control brain; during incubation, the ACh outside nerve endings increased four-fold, the ACh released from synaptosomes by osmotic shock doubled but the ACh bound firmly within nerve endings did not increase. The two nerve ending stores of ACh were labelled to similar specific radioactivities when slices were incubated with [3H]choline, but the specific radioactivity of the ACh formed was much lower than that of the added choline. Tissue incubated in the presence of eserine released choline and ACh into the medium and the tissue levels of both substances increased. Brain tissue exposed to Na+-free medium lost 84 per cent of its ACh and 66 per cent of its free choline; the amounts of both substances returned towards control values during subsequent incubation in a normal-Na+ medium (choline-free). Both the ACh outside nerve endings and the ACh associated with synaptosomes were depleted when tissue was incubated in Na+-free medium.  相似文献   

15.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

16.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

17.
Abstract: Excitatory amino acids are an important cause of cell death in the hypoxic and ischaemic brain. Neuronal glutamate stores are depleted rapidly in hypoxia, but alanine production rises under such conditions and has been suggested to be a potential precursor of glutamate. To test this hypothesis, we have investigated amino acid metabolism using 13C NMR with superfused guinea pig cortical slices subjected to varying degrees of hypoxia. During severe hypoxia, brain slices metabolising 5 m M [2-13C]pyruvate exported [2-13C]alanine into the superfusion fluid. The metabolic fate of alanine during normoxia and hypoxia was tested by superfusion of brain slices with 10 m M glucose and 2 m M [2-13C, 15N]alanine. Metabolism of exogenous alanine leads to the release of aspartate into the superfusion fluid. The pattern of labelling of aspartate indicated that it was synthesised via the glial-specific enzyme pyruvate carboxylase. 13C-labelled glutamate was produced with both normoxia and hypoxia, but concentrations were 30-fold lower than for labelled aspartate. Thus, although substantial amounts of glutamate are not synthesised from alanine in hypoxia, there is significant production of aspartate, which also may have deleterious effects as an excitatory amino acid.  相似文献   

18.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

19.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

20.
Methanolic extracts of Zea mays L. cv. Fronica root segments which had been incubated in [14C] indole-3-acetie acid were analysed by reverse-phase high-performance liquid chromatography. Metabolism of indole-3-acetic acid was found to be rapid and extensive with at least 11 products apparent after a 2 h incubation. A comparison of metabolites of [1-14C]– and [2-14C] IAA, calculations of 14CO2 evolution, and data on the polarity of products indicated that decarboxylation had not occurred. An average of 34% of the radioactivity remained associated with the indole-3-acetic acid peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号