首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lin L  Park M  York DA 《Peptides》2007,28(3):643-649
Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knock out mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 i.c.v. blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in alpha-melanocyte stimulating hormone (alpha-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway.  相似文献   

3.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40–49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-α), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle4, D-Phe7]-α -MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-α upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R–effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

4.
Kim MS  Rossi M  Abbott CR  AlAhmed SH  Smith DM  Bloom SR 《Peptides》2002,23(6):1069-1076
Intracerebroventricular (ICV) injection of Agouti related protein (AgRP), an endogenous melanocortin 3 and 4 receptor (MC3/4-R) antagonist, produces a prolonged increase in food intake. To clarify the roles of the MC3-R and MC4-R in AgRP-induced hyperphagia, the feeding effect of AgRP (83-132) was compared with that of the selective MC4-R antagonist, JKC-363 (cyclic [Mpr11, D-Nal14, Cys18, Asp22-NH2]-beta-MSH11-22). Single ICV administration of AgRP (83-132) increased food intake for 48 h whilst ICV JKC-363 increased food intake for 8h. An increase in body weight at 24 and 48 h was observed following AgRP (83-132) but not JKC-363 treatment. These data suggest that the sustained orexigenic action of AgRP (83-132) may not be through MC4-R antagonism.  相似文献   

5.
Suckling- and estrogen-induced prolactin release from the anterior pituitary is mediated by alpha-melanocyte stimulating hormone (alpha-MSH) secreted by the intermediate lobe of the pituitary in the rat. Melanocortin 5-receptors are expressed in the anterior pituitary and probably mediate the alpha-MSH function. In contrast, the mouse anterior pituitary does not express the receptor. To examine whether or not alpha-MSH regulates prolactin release in mice, we performed cell immunoblot assay using anterior pituitary cells from adult female mice. We found that alpha-MSH acted on mammotrophs (prolactin-secreting cells) and stimulated prolactin release in a dose dependent manner. A series of RT-PCR using oligonucleotide primer pairs specific for each subtypes of melanocortin receptors revealed that the melanocortin 3-receptor is the sole receptor expressed in the mouse anterior pituitary. These results suggest that alpha-MSH-induced prolactin release is mediated by melanocortin 3-receptors in female mice.  相似文献   

6.
alpha-Melanocyte stimulating hormone (MSH) has generally been assumed to be the endogenous ligand acting at the melanocortin-4 receptor (MC4-R), activation of which in the hypothalamus leads to reduced feeding. However, beta-MSH is also capable of activating MC4-R and inhibiting feeding. Here, we investigated the possibility that beta-MSH acts as an endogenous MC4-R agonist and that this melanocortin peptide plays a role in the regulation of feeding and energy balance. We found that beta-MSH had significantly higher affinities than alpha-MSH at both human MC4-R transfected into CHO cells (K(i): beta-MSH, 11.4+/-0.4 nmol/l versus alpha-MSH, 324+/-16 nmol/l, P<0.001) and MC4-R in rat hypothalamic homogenates (K(i): beta-MSH, 5.0+/-0.4 nmol/l versus alpha-MSH, 22.5+/-2.3 nmol/l, P<0.001). Incubation of brain slices with 5 microM beta-MSH significantly increased [35S]GTPgammaS binding by 140-160% (P<0.001), indicating activation of G-protein-coupled receptors (GPCRs), in the hypothalamic ventromedial (VMH), dorsomedial (DMH), arcuate (ARC) and paraventricular (PVN) nuclei. These sites match the distribution of beta-MSH immunoreactive fibres and also the distribution of MC4-R binding sites which we and others previously reported. Food-restriction significantly increased beta-MSH levels in the VMH, DMH and ARC (all P<0.05) above freely-fed controls, whilst alpha-MSH concentrations were unchanged. We propose that increased beta-MSH concentrations reflect blockade of the peptide's release in these sites, consistent with the increased hunger and the known up-regulation of MC4-R in the same nuclei. Thus, we conclude that (1). beta-MSH has higher affinity at MC4-R than alpha-MSH; (2). beta-MSH activates GPCR in these sites, which are rich in MC4-R; and (3). beta-MSH is present in hypothalamic nuclei that regulate feeding and its concentrations alter with nutritional state. We suggest that beta-MSH rather than alpha-MSH is the key ligand at the MC4-R populations that regulate feeding, and that inhibition of tonic release of beta-MSH is one mechanism contributing to hunger in under-feeding.  相似文献   

7.
Melanocortin-4 receptor (MC4-R) density is thought to be regulated by synaptic availability of endogenous agonist, alpha-melanocyte-stimulating hormone (alpha-MSH), and also by agouti-related protein (AGRP), which acts as a competitive antagonist. As hypothalamic MC4-R have been implicated in the regulation of energy balance, we examined concentrations of alpha-MSH and AGRP in hypothalami of dietary-obese and food-restricted rats. In dietary-obese rats, AGRP concentrations were significantly increased by 43% (p < 0.01) above lean controls, whereas a 91% (p < 0.01) reduction was observed in food-restricted rats. Surprisingly, hypothalamic concentrations of alpha-MSH and its precursor peptide, pro-opiomelanocortin (POMC), did not differ significantly from controls in either model. In conclusion, we suggest that MC4-R activity may not be regulated by changes in agonist (alpha-MSH) but by changes in the antagonist (AGRP) availability, which may modulate background activation of the receptor by tonic alpha-MSH release. AGRP may be an important modulator of feeding behaviour.  相似文献   

8.
The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises alpha-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83-132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83-132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83-132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of alpha-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.  相似文献   

9.
alpha-MSH acutely enhanced the plasma concentration of aldosterone (but not that of corticosterone) in the rat, with a maximal response at a dose of 100 micrograms/kg. This dose of alpha-MSH increased the blood level o aldosterone and the activity of 11 beta-hydroxylase and 18-hydroxylase of capsular adrenals in rats infused for 24 h with dexamethasone, dexamethasone plus ACTH, or captopril plus angiotensin II, but not in animals treated with captopril alone. The plasma concentration of corticosterone and the activity of 11 beta-hydroxylase in the inner adrenal layers were not changed. These findings indicate that alpha-MSH is specifically involved in the acute stimulation of the late steps of the secretory activity of the rat zona glomerulosa, and that this action of alpha-MSH requires a normal level of circulating angiotensin II.  相似文献   

10.
Melanocortin system and corticotropin releasing hormone (CRH) are implicated in the control of feeding behavior. Besides its anorexigenic effect on food intake, CRH is one of the most important regulators of hypothalamic-pituitary-adrenal (HPA) axis activity. Therefore, there could be an interplay between HPA axis activity and melanocortin system. We investigated the expression of melanocortin-4 receptor (MC4-R) mRNA in the hypothalamus of rats after 14 days of food restriction or after a fasting-refeeding regimen, in sham or adrenalectomized rats. Male Wistar rats were subjected to free access to food or food ingestion restricted for 2 h a day (8-10 AM) during 14 d, when plasma corticosterone, ACTH, insulin, leptin concentrations, and MC4-R mRNA expression were determined before and after refeeding. Another set of rats was fasted for 48 h, followed by refeeding during 2 or 4 h on the seventh day after adrenalectomy (ADX) or sham surgery. On the day of the experiment, rats were anesthetized and perfused and the brain processed for MC4-R mRNA by in situ hybridization. Long-term reduction of food intake, either secondary to food restriction or adrenalectomy, reduced body weight gain and also leptin and insulin plasma concentrations. Food ingestion reduced MC4-R expression in the paraventricular nucleus in naive rats subjected to food restriction and also in sham rats fasted for 48 h. However, after ADX, MC4-R expression was not changed by refeeding. In conclusion, the present data indicate that MC4-R expression is downregulated by food ingestion and this response could be modulated by glucocorticoid withdrawal.  相似文献   

11.
To study the peripheral effects of melanocortin on fuel homeostasis in skeletal muscle, we assessed palmitate oxidation and AMP kinase activity in alpha-melanocyte-stimulating hormone (alpha-MSH)-treated muscle cells. After alpha-MSH treatment, carnitine palmitoyltransferase-1 and fatty acid oxidation (FAO) increased in a dose-dependent manner. A strong melanocortin agonist, NDP-MSH, also stimulated FAO in primary culture muscle cells and C2C12 cells. However, [Glu6]alpha-MSH-ND, which has ample MC4R and MC3R agonistic activity, stimulated FAO only at high concentrations (10(-5) M). JKC-363, a selective MC4R antagonist, did not suppress alpha-MSH-induced FAO. Meanwhile, SHU9119, which has both antagonistic activity on MC3R and MC4R and agonistic activity on both MC1R and MC5R, increased the effect of alpha-MSH on FAO in both C2C12 and primary muscle cells. Small interference RNA against MC5R suppressed the alpha-MSH-induced FAO effectively. cAMP analogues mimicked the effect of alpha-MSH on FAO, and the effects of both alpha-MSH and cAMP analogue-mediated FAO were antagonized by a protein kinase A inhibitor (H89) and a cAMP antagonist ((Rp)-cAMP). Acetyl-CoA carboxylase activity was suppressed by alpha-MSH and cAMP analogues by phosphorylation through AMP-activated protein kinase activation in C2C12 cells. Taken together, these results suggest that alpha-MSH increases FAO in skeletal muscle, in which MC5R may play a major role. Furthermore, these results suggest that alpha-MSH-induced FAO involves cAMP-protein kinase A-mediated AMP-activated protein kinase activation.  相似文献   

12.
The proinflammatory cytokine interleukin-1beta (IL-1beta) influences neuroendocrine activity and produces other effects, including fever and behavioral changes such as anxiety. The melanocortin neuropeptides, such as alpha-melanocyte-stimulating hormone (alpha-MSH), antagonize many actions of IL-1, including fever, anorexia and hypothalamic-pituitary-adrenal (HPA) axis activation through specific melanocortin receptors (MC-R) in the central nervous system. The objective of the present study was to establish the effect of MSH peptides on IL-1beta-induced anxiety-like behavior and the melanocortin receptors involved. We evaluated the effects of intracerebroventricular (i.c.v.) administration of IL-1beta (30 ng) and melanocortin receptor agonists: alpha-MSH, an MC3/MC4-R agonist (0.2 microg) or gamma-MSH, an MC3-R agonist (2 microg) or HS014, an MC4-R antagonist (2 microg), on an elevated plus-maze (EPM) test. Injection of IL-1beta induced an anxiogenic-like response, as indicated by reduced open arms entries and time spent on open arms. The administration of alpha-MSH reversed IL-1beta-induced anxiety with co-administration of HS014 inhibiting the effect of alpha-MSH. However, the associated treatment with gamma-MSH did not affect the anxiety response to IL-1beta. These data suggest that alpha-MSH, through central MC4-R can modulate the anxiety-like behavior induced by IL-1beta.  相似文献   

13.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a neuroimmunomodulatory peptide that is involved in the control of host responses trough modulation of production and action of proinflammatory cytokines in inflammatory cells in the periphery and within the central nervous system (CNS). However, little is known about the receptors that mediate the modulatory effects of alpha-MSH in the CNS. The objective of the present study was to establish the specific melanocortin receptors involved in the inhibition by MSH peptides of IL-1beta-induced activation of the HPA. i.c.v. injection of 12.5 ng of IL-1beta caused significant changes in plasma corticosterone, as compared to basal levels. The treatment with gamma-MSH (1 microg), an MC3 receptor agonist, resulted in significant reduction of the IL-1beta-induced plasma corticosterone levels. Administration of the MC3/MC4 receptor antagonist SHU9119 blocked this effect. Besides, treatment with a high dose of alpha-MSH (1 microg) increased plasma corticosterone. When alpha-MSH was given at a lower dose (0.1 microg), it did not modify corticosterone levels but caused an inhibitory effect on the corticosterone release induced by IL-1beta. The administration of SHU9119 or a more selective MC4 receptor antagonist like HS014 blocked the effects of alpha-MSH. In conclusion, our results suggest that both alpha-MSH and gamma-MSH are capable of inhibiting the effect of the IL-1beta on the activation of HPA axis acting at the CNS, and that this effect is mediated by specific central melanocortin receptors.  相似文献   

14.
The melanocortin 4 receptor (MC4-R) is a Gs-coupled receptor known to increase cAMP production following agonist stimulation. We demonstrate that the mitogen-activated protein kinases p42 (ERK2) and p44 (ERK1) are also activated by MC4-R following treatment with the MC4-R agonist NDP--MSH in stably transfected CHO-K1 cells. This time- and dose-dependent response is abolished by the MC4-R antagonist SHU-9119. p42/p44 MAPK activation is blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 but not by the protein kinase A (PKA) inhibitor Rp-cAMPS, indicating that that signal activating the p42/p44 MAPK pathway is conveyed through inositol triphosphate.  相似文献   

15.
Leptin, the obese gene product, was reported to stimulate prolactin (PRL) secretion, but the neuroendocrine mechanism underlying this hormonal response is largely unknown. Thus, in this study we examined the involvement of several important PRL regulators in the leptin-induced PRL secretion in male rats. Compared with the values in normally fed rats, food deprivation for 3 days significantly decreased both PRL and leptin levels in the plasma. These changes were reverted to normal by a 3-day constant infusion of 75 microg/kg/day of leptin to the fasted rats, while 225 microg/kg/day of leptin further elevated both PRL and leptin levels. These four groups of animals were used for the following experiments. Results of dopamine and serotonin turnover studies in the brain and the pituitary indicated that neither of these biogenic amines plays a primary role in mediating leptin's effects on PRL. Repeated intracerebroventricular injections over 72 h of neutralizing antibodies against vasoactive intestinal peptide, PRL-releasing peptide, or beta-endorphin, did not significantly suppress the leptin actions. However, both the blockade of the melanocortin (MC) 4 receptor (R) and the immunoquenching of brain alpha-melanocyte-stimulating hormone (alpha-MSH) completely abolished the leptin-induced PRL release, and the stimulation of the MC4-R, but not the MC3-R, significantly elevated PRL levels in the fasted rats. These results suggest that alpha-MSH, a cleaved peptide from pro-opiomelanocortin of which synthesis is stimulated by leptin, may be the pivotal neuropeptide in the brain mediating the leptin's stimulatory influence on PRL secretion. It was also suggested that the MC4-R may be the primary subtype of the MC-Rs mediating this action of alpha-MSH.  相似文献   

16.
The melanocortin-4 receptor (MC4R) plays an important role in the regulation of body weight in rodents. Mutations in the coding region of the MC4R are found more frequently in obese individuals, supporting the hypothesis that also in humans deficient melanocortin signaling may lead to obesity. Family studies that were carried out to demonstrate the relevance of single mutations for obesity were mostly inconclusive, most likely due to small sample size and complexity of the trait. In addition, the existing pharmacological data of the mutant receptors are limited in that for most mutations the effect on receptor expression level and Agouti-related protein (AgRP) pharmacology have not been studied. The aim of the present study was to gain further insight into the impact of the MC4R mutations on receptor function. Eleven missense mutations were tested for cell surface expression, affinity for alpha-melanocyte-stimulating hormone (alpha-MSH) and AgRP-(83-132), and the biological response to alpha-MSH. All mutants were poorly expressed at the cell surface, as measured by 125I-[Nle4-D-Phe7]alpha-MSH binding, and only a few mutants showed altered pharmacology for alpha-MSH and AgRP. Hemagglutinin-tagged mutant receptors were retained in the intracellular environment. These pharmacological data provide a basis to estimate the quantitative effect of MC4R mutations for the development of obesity.  相似文献   

17.
18.
《Hormones and behavior》2008,53(5):612-620
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

19.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号