首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of bioactive peptides in an in vitro system   总被引:1,自引:0,他引:1  
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.  相似文献   

2.
Summary The effects of a 7-day administration of aminoglutethimide (AG) on the adrenal zona fasciculata were examined in normal and dexamethasone/ACTH-treated rats. There was a 70–74% decrease in the concentration of corticosterone in blood, but no conspicuous qualitative changes suggesting cell degeneration occurred. Morphometry showed that AG induced a significant hypertrophy of the zona fasciculata and its parenchymal cells only in normal animals, which was due to an increase in the volume of the mitochondrial compartment and to proliferation of the smooth endoplasmic reticulum. This response to AG was considered to be non-specific and mediated by the enhanced secretion of ACTH following the decrease in the blood level of corticosterone. AG administration significantly increased the volume of the lipid-droplet compartment and the number of intramitochondrial lipid-like inclusions in both groups of animals. These changes were interpreted as the morphological counterpart of the AG-induced block of cholesterol utilization in steroid synthesis.  相似文献   

3.
Summary The intra-glandular vascular arrangement in the adrenal has been studied using non-radioactive microspheres injected by three different routes: in-vivo injection into the left ventricle under pentobarbital anesthesia, postmortem orthograde, and postmortem retrograde injection. The doses of microspheres were 105 (average size 24.7 m), 106 (15.8 m) and 107 (9.9 m). The entrapment rate of microspheres by the medulla as compared with the whole gland was measured in the serially sectioned tissue (section thickness 60 m).The entrapment rates of 25-m microspheres differed between the orthograde and retrograde injections, while the entrapment rates for 15-m microspheres were essentially similar irrespective of the route of injection.Our results support the conclusion from previous microangiographic studies that the adrenal cortex and medulla are supplied by different arteries but have a common venous outflow, and that direct communication between cortical and medullary sinusoids is not likely. The medullary blood flow per gram tissue weight is estimated to be larger than cortical blood flow.  相似文献   

4.
Adrenomedullin (ADM) is a hypotensive peptide, highly expressed in the mammalian adrenal medulla, which belongs to a peptide superfamily including calcitonin gene-related peptide (CGRP) and amylin. Quantitative autoradiography demonstrated the presence of abundant [125I]ADM binding sites in both zona glomerulosa (ZG) and adrenal medulla. ADM binding was selectively displaced by ADM(22–52), a putative ADM-receptor antagonist, and CGRP(8–37), a ligand that preferentially antagonizes the CGRP1-receptor subtype. ADM concentration-dependently inhibited K+-induced aldosterone secretion of dispersed rat ZG cells, without affecting basal hormone production. Both ADM(22–52) and CGRP(8–37) reversed the ADM effect in a concentration-dependent manner. ADM counteracted the aldosterone secretagogue action of the voltage-gated Ca2+-channel activator BAYK-8644, and blocked K+- and BAYK-8644-evoked rise in the intracellular Ca2+ concentration of dispersed ZG cells. ADM concentration-dependently raised basal catecholamine (epinephrine and norepinephrine) release by rat adrenomedullary fragments, and again the response was blocked by both ADM(22–52) and CGRP(8–37). ADM increased cyclic-AMP release by adrenal-medulla fragments, but not capsule-ZG preparations, and the catecholamine response to ADM was abolished by the PKA inhibitor H-89. Collectively, the present findings allow us to draw the following conclusions: (1) ADM modulates rat adrenal secretion, acting through ADM(22–52)-sensitive CGRP1 receptors, which are coupled with different signaling mechanisms in the cortex and medulla; (2) ADM selectively inhibits agonist-stimulated aldosterone secretion, through a mechanism probably involving the blockade of the Ca2+ channel-mediated Ca2+ influx; (3) ADM raises catecholamine secretion, through the activation of the adenylate cyclase/PKA signaling pathway.  相似文献   

5.
Slices of whole adrenal gland tissue, incubated in vitro in the presence of ACTH for 1 h and 2 h produced corticosterone and aldosterone in constant ratio (16:1). Tangential slices taken from the region immediately below the connective tissue capsule and slices taken from deeper regions of the gland consisted primarily of cells conforming to the distinct structural characteristics of the subcapsular zone (SCZ) and inner zone (IZ) tissues respectively. When samples were incubated in the presence of ACTH for 1 h and 2 h, the interrenal cells of the SCZ produced relatively more aldosterone than cells taken from the IZ of the gland. The corticosterone: aldosterone ratio for the IZ after 1 h (68:1) and after 2 h (102:1) were ten times greater than the ratios for the SCZ after 1 h (7:1) and after 2 h (10:1). The SCZ slices were not more than 60 cells thick and consisted of cells arranged in cords. These cells contained irregular nuclei, mitochondria with shelf-like cristae and a moderate abundance of smooth endoplasmic reticulum. In contrast, the production of large amounts of corticosterone by the cells of the IZ was associated with tissue containing more vascular space than the SCZ and the cells contained large round nuclei surrounded by an abundance of smooth endoplasmic reticulum and the mitochondria had tubular rather than shelf-like cristae.  相似文献   

6.
Summary There are two regions of steroidogenic cells in the duck adrenal gland. An outer, subcapsular zone (SCZ), consisting of cells with irregularly shaped nuclei, shows relatively little smooth endoplasmic reticulum and mitochondria with shelf-like cristae. This region surrounds the inner zone (IZ) of the gland which is comprised of smaller cells with rounded nuclei, a more abundant smooth endoplasmic reticulum and mitochondria with tubular cristae. When samples of tissue from these distinct regions of the gland are superfused in vitro with media containing concentrations of 1–24 ACTH ranging from 100 to 1000 ng per ml (0.034 to 0.34 M) the steroidogenic cells in both zones release corticosterone in a dose-dependent manner. The dose-responsiveness of both the SCZ and the IZ cells over this range is a complex quadratic function of the 1–24 ACTH concentration in the medium and the semilogarithmic linear portions of the dose-response curves are restricted to a narrow midrange of ACTH concentrations. Throughout the dose-response range, however, the steroidogenic cells of the IZ are more responsive to corticotropic stimulation than are the cells of the SCZ. The cells of the two zones are further distinguished by their responses to a challenge for a second time with medium containing 1–24 ACTH; the responses of the IZ cells to a second challenge were greater than those of the SCZ cells, and at a high concentration of ACTH the SCZ slices showed no significant second response.This work was supported by a grant from the National Science Foundation (PCM 79-15777) to James Cronshaw and W.N. Holmes  相似文献   

7.
We have localized at light and electron-microscopic level the growth-associated protein GAP-43 in adrenal gland using single and double labelling immunocytochemistry. Clusters of GAP-43-immunofluorescent chromaffin cells and many immunofluorescent fibres were observed in the medulla. GAP-43-immunoreactive fibres also formed a plexus under the capsule, crossed the cortex and ramified in the zona reticulata. Double labelled sections showed the coexpression of GAP-43 with a subpopulation of tyrosine hydroxylase-and of dopamine--hydroxylase-immunoreactive chromaffin cells. Dual colour immunofluorescence for GAP-43 and calcitonin gene-related peptide (CGRP) revealed that some of the GAP-43-immunoreactive fibres also express CGRP. Pre-embedding electron microscopy showed GAP-43 immunoreactivity associated with the plasma membranes and cytoplasm of noradrenaline-producing chromaffin cells, and with processes of nonmyelin-forming Schwann cells. Immunoreactive unmyelinated axons and terminals were also observed. The immunostained terminals made symmetrical synaptic contacts with chromaffin cells. Immunoreactive unmyelinated fibres and small terminals were present in the cortex. Our results show that GAP-43 is expressed in noradrenergic chromaffin cells and in various types of nerve fibres that innervate the adrenal. Likely origins for these fibres include preganglionic sympathetic fibres which innervate chromaffin cells, postganglionic sympathetic fibres in the cortex, and CGRP containing sensory fibres.  相似文献   

8.
9.
Summary Vinblastine treatment blocks corticosterone release from rat adrenal zona fasciculata without impairing hormone synthesis, and induces the formation of acid phosphatase-positive granular clumps at the juxta-sinusoidal pole of the cells. Autoradiography shows that ACTH administration to vinblastine-treated animals mobilizes the 3H-cholesterol stored in the lipid droplets and leads to a noticeable labelling of the granular clumps. The possible significance of these granules is discussed.  相似文献   

10.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

11.
Hexachlorobenzene (HCB), is a global pollutant that resists degradation and possesses a propensity to bioaccumulate. However, the effect of HCB on adrenal function remains largely unknown. Thus, circulating levels of adrenal steroids in HCB-exposed (0.0, 1.0, 10.0, or 100.0 mg/kg/day—for 30 days by gavage) adult ovariectomized Sprague–Dawley rats (N = 32) were investigated. A terminal blood sample was collected for HCB residue analysis, and levels of circulating progesterone (P4), corticosterone (CS), and aldosterone (ALD) were quantified. Mean serum CS levels were significantly (P = 0.02) reduced by HCB exposure, starting with the lowest dose group (1.0 mg/kg/day for 30 days), whereas no differences in mean serum P4 and ALD levels were observed. Since it has been argued that the rodent possesses the ability to produce small amounts of cortisol and that levels of this glucocorticoid are altered in pathological states, serum cortisol (C) levels were also measured. Circulating levels of C were significantly lower (P < 0.05) in the highest dose group compared with controls. The presence of C in serum was confirmed by reverse-phase HPLC. These data suggest that even at the lowest dose studied, HCB exposure induces alterations in steroidogenesis of cells of the adrenal cortex inner zone.  相似文献   

12.
Summary A single melatonin injection was administered intraperitoneally to three avian species in two doses (250 and 500 g · 100 g body wt–1). Norepinephrine (NE), epinephrine (E), and corticosterone (C) contents of the adrenal gland were measured spectrofluorometrically 0.5, 2, and 24 h after injection. The results showed that melatonin at the lower dose caused a decrease of NE content in bulbul (42%), babbler (52%), and pigeon (39%), while at the higher dose it resulted in a decrease of NE only in bulbul (51%) 0.5 h after treatment. Melatonin at the lower dose also caused a decrease of NE in bulbul (45%) and babbler (53%) 2 and 24 h, respectively, after treatment, while at the higher dose it resulted in an increase of NE in bulbul (82%) and a decrease of NE in babbler (44%) 24 h after injection.Both low and high doses of melatonin resulted in a decrease of E content in bulbul (32–43%), babbler (34–43%), and pigeon (44–56%) 0.5 h after treatment, and a 34–46% decrease of E in bulbul and a 32–33% decrease of E in babbler 2 h after treatment. A 57% decrease of E was evident in pigeon with the lower dose of melatonin 2 h after injection. Melatonin at the higher dose caused a 67% increase of E in babbler and a 41% decrease of E in pigeon 24 h after administration. Melatonin at the lower dose resulted in an increase of C content in bulbul (70%), babbler (132%), and pigeon (69%) 0.5 h after treatment. A 60% increase of C was evident in pigeon following the lower dose of melatonin 24 h after injection. Melatonin at the higher dose resulted in an increase of C in the bulbul of 72% and 86% at 0.5 and 24 h, respectively, after treatment. The results indicate that melatonin produces significant changes of NE, E, and C contents in three avian species. The lower dose appears to be more effective in changing NE and C content.Abbreviations C corticosterone - CA catecholamine - DBH dopamine -hydroxylase - E epinephrine - NE norepinephrine  相似文献   

13.
Summary The innervation of the adrenal cortex of the rat and the pig is investigated with the electron microscope. Nerve fibers containing synaptic and two types of dense-cored vesicles come into contact with endocrine cells. There are no specialized pre- and postsynaptic membranes. The synaptic cleft is about 200 Å wide. Generally the basement membrane between nerve and cell is absent. These observations are discussed on the base of more recent experimental findings. Small fibers having an average diameter of about 0.2 to 0.5 and containing only tubules and filaments are considered to represent parts of an afferent nervous system.Dedicated to Prof. v. Kügelgen on the occasion of his 60th birthday.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

14.
The present study assessed annual adrenal gland activity in the Indian tropical Jungle bush quail, Perdicula asiatica. We also elucidated the role of the annual variations in gonadal steroids and melatonin in the regulation of its activity. Increasing day length (photoperiod), ambient temperature and rainfall are positively correlated with adrenal and gonadal functions, and inversely related to pineal gland activity. Pineal, adrenal and gonadal weights showed cyclical patterns relative to environmental factors, which were also correlated with plasma melatonin, corticosterone and gonadal steroids, respectively. In both sexes of P. asiatica, pineal gland weight and/or plasma melatonin levels were inversely related to adrenal lipids, (e.g. phospholipids, free and esterified cholesterol) and plasma corticosterone levels. Melatonin levels also showed an inverse relationship with plasma testosterone and estradiol levels. These studies indicate that changes in environmental factors promote annual variations in adrenal and gonadal activity probably by modulating the pineal gland. Melatonin receptors have been localized in the pars tuberalis, adrenal gland and gonads of birds, the pineal gland may, therefore, mediate environmental stimuli indirectly and directly to down regulate adrenal and gonadal activity, which run in parallel in this species.  相似文献   

15.
Summary Seven thymuses from children between 1 and 12 years were examined by electron microscopy. Biopsies had been taken during surgical correction of congenital heart defects.In all cases we found interdigitating reticulum cells (IRC) in the medulla and inner cortex. These cells resembled the IRC which have been described previously in the thymus-dependent regions of the spleen and lymph node. They were characterized by an irregularly shaped nucleus, narrow cisterns of rough endoplasmic reticulum, and widespread interdigitation and invagination of the cell membrane. The surfaces of the IRC were in close contact with those of small lymphocytes, sometimes polysomal lymphatic cells, epithelial cells, and occasionally with those of lymphatic cells containing ergastoplasm.The IRC is apparently a specific cell of thymus-dependent regions. It may be that the IRC in the thymus, lymph node, and spleen contribute to the microenvironment needed for the differentiation of T-cells.Supported by the Deutsche Forschungsgemeinschaft, SFB 111/CII and III.—We wish to thank Miss M. Neubert and Mrs. R. Köpke for their technical assistance and Mrs. M. Soehring for her help with the translation.  相似文献   

16.
Summary The zona glomerulosa of the rat adrenal gland is innervated by catecholaminergic nerves. Using histofluorescence techniques, we observed catecholaminergic plexuses surrounding adrenal capsular and subcapsular blood vessels. Individual varicose nerve fibers that branched off these plexuses were distributed among adrenal glomerulosa cells. This innervation was permanently eliminated after neonatal sympathectomy with guanethidine or 6-hydroxydopamine, but was not affected by ligation of the splanchnic nerve or extirpation of the suprarenal ganglion. At the ultrastructural level, axonal varicosities were commonly observed in close proximity to glomerulosa cells and blood vessels. Nerve fibers and varicosities were found to contain small (30–60 nm) clear vesicles as well as large (60–110 nm) and small (30–60 nm) dense-cored vesicles. In tissue fixed for the dichromate reaction with or without pretreatment with the false transmitter 5-hydroxydopamine, many nerve terminals contained numerous small dense-cored vesicles which are thought to contain catecholamines. These results establish the anatomical substrate for the catecholaminergic innervation of the rat adrenal cortex.  相似文献   

17.
Summary Previous studies have shown that somatostatin modulates angiotensin-induced aldosterone secretion by adrenal glomerulosa cells. This effect is mediated through specific receptors which do not show any preference for somatostatin-14 (S14) or the N-extended form somatostatin-28 (S28). The study of the distribution of 125I-Tyr [Tyr0, DTrp8] S14-and 125I-Tyr[Leu8, DTrp22, Tyr25] S28-binding in frozen sections of the rat adrenal by autoradiography indicated that both peptides bind to similar loci. High concentrations of binding sites were observed in the zona glomerulosa, and low concentrations were detected in the medulla. At the ultrastructural level, immunocytochemistry after cryoultramicrotomy revealed endogenous S14-and S28-like immunoreactive material in zona glomerulosa and in medulla. In glomerulosa cells, immunoreactive material was localized at the plasma membrane level, in the cytoplasmic matrix, in the mitochondria, and in the nucleus. S14-and S28-like materials were detected in both epinephrine and norepinephrine-storing cells of the adrenal medulla. In these cells, the distribution of either immunoreactive product was similar; it was observed in cytoplasmic matrix, secretory granules and nucleus, but not at the plasma membrane level. In situ hybridization does not reveal somatostatin mRNA in zona glomerulosa or medulla. These results demonstrate that S14 and S28 bind to, and are taken up by zona glomerulosa and adrenal medullary cells, but are not produced by these cells.  相似文献   

18.
The effects of a 3-day water deprivation were studied in adult female rats in order to know what are the different zones of the adrenal gland and the hormonal factors involved in the growth and the activity of the adrenal gland. Water deprivation significantly increased plasma renin activity (PRA), plasma Angiotensin II (AII), vasopressin (AVP), epinephrine, aldosterone and corticosterone concentrations but did not modify the plasma adrenocorticotropin hormone (ACTH) level. Water deprivation significantly increased the absolute weight of the adrenal capsule containing the zona glomerulosa without modification of the density of cells per area unit suggesting that the growth of the adrenal capsule was due to a cell hyperplasia of the zona glomerulosa. Water deprivation significantly increased the density of AII type 1 (AT1) receptors in the adrenal capsule but did not modify the density of AII type 2 (AT2) receptors in the adrenal capsule and core containing the zona fasciculata, the zona reticularis and the medulla. The treatment of dehydrated female rats with captopril, which inhibits the angiotensin converting enzyme (ACE) in order to block the production of AII, significantly decreased the absolute weight of the adrenal capsule, plasma aldosterone and the density of AT1 receptors in the adrenal capsule. The concentration of corticosterone in the plasma, the density of AT2 receptors and the density of cells per unit area in the zona glomerulosa of the adrenal capsule were not affected by captopril-treatment. In conclusion, these results suggest that AII seems to be the main factor involved in the stimulation of the growth and the secretion of aldosterone by the adrenal capsule containing the zona glomerulosa during water deprivation. The low level of plasma ACTH is not involved in the growth of the adrenal gland but is probably responsible for the secretion of corticosterone by the zona fasciculata.  相似文献   

19.
20.
Transgenic rats for the murine Ren-2 gene display high blood pressure, low circulating levels of angiotensin II, and high renin content in the adrenal glands. Moreover, transgenic rats possess and increased aldosterone secretion (maximal from 6 to 18 weeks of age), paralleling the development of hypertension. To investigate further the cytophysiology of the adrenal glands of this strain of rats, we performed a combined morphometric and functional study of the zona glomerulosa of 10-week-old female transgenic rats. Morphometry did not reveal notable differences between zona glomerulosa cells of transgenic and age- and sex-matched Sprague-Dawley rats, with the exception of a marked accumulation of lipid droplets, in which cholesterol and cholesterol esters are stored. The volume of the lipid-droplet compartment underwent a significant decrease when transgenic rats were previously injected with angiotensin II or ACTH. Dispersed zona glomerulosa cells of transgenic rats showed a significantly higher basal aldosterone secretion, but their response to angiotensin II and ACTH was similar to that of Sprague-Dawley animals. Angiotensin II-receptor number and affinity were not dissimilar in zona glomerulosa cells of transgenic and Sprague-Dawley rats. These data suggest that the sustained stimulation of the adrenal renin-angiotensin system in transgenic animals causes an increase in the accumulation in zona glomerulosa cells of cholesterol available for steroidogenesis, as indicated by the expanded volume of the lipid-droplet compartment and the elevated basal steroidogenesis. However, the basal hyperfunction of the zona glomerulosa in transgenic animals does not appear to be coupled with an enhanced responsivity to its main secretagogues, at least in terms of aldosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号