首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

2.
3.
The 5'-terminal region of U1 snRNA is highly complementary to the consensus exon-intron regions of hnRNA and it has been suggested that U1 snRNP might play a role in the splicing of the pre-mRNA by intermolecular base-pairing between these regions. Here the secondary structure of the 5' terminus of U1 RNA in the isolated native U1 snRNP particle has been investigated by site-directed enzymatic cleavage of the RNA. Individual oligodeoxynucleotides complementary to various sequences within the first 15 nucleotides of the 5' terminus of U1 RNA have been tested for their ability to form stable DNA X RNA hybrids, with subsequent cleavage of the U1 RNA by RNase H. Our results show unequivocally that the 9 nucleotides at the 5' terminus which are complementary to a consensus 5' splice site are indeed single-stranded in the intact U1 snRNP particle, and are not protected by snRNP proteins. However, they also indicate that the U1 sequence complementary to an intron's consensus 3' end is not readily available for intermolecular base-pairing, either in the intact U1 snRNP particle or in the deproteinized U1 RNA molecule. Therefore our data favour the possibility that U1 snRNP plays a role only in the recognition of a 5' splice site of hnRNA, rather than being involved in the alignment of both ends of an intron for splicing.  相似文献   

4.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

5.
6.
Antibodies to DNA are characteristic of the autoimmune disease systemic lupus erythematosus (SLE) and they also serve as models for the study of protein-DNA recognition. Anti-DNA antibodies often play an important role in disease pathogenesis by mediating kidney damage via antibody-DNA immune complex formation. The structural underpinnings of anti-DNA antibody pathogenicity and antibody-DNA recognition, however, are not well understood, due in part to the lack of direct, experimental three-dimensional structural information on antibody-DNA complexes. To address these issues for anti-single-stranded DNA antibodies, we have determined the 2.1 A crystal structure of a recombinant Fab (DNA-1) in complex with dT5. DNA-1 was previously isolated from a bacteriophage Fab display library from the immunoglobulin repertoire of an SLE-prone mouse. The structure shows that DNA-1 binds oligo(dT) primarily by sandwiching thymine bases between Tyr side-chains, which allows the bases to make sequence-specific hydrogen bonds. The critical stacking Tyr residues are L32, L49, H100, and H100A, while His L91 and Asn L50 contribute hydrogen bonds. Comparison of the DNA-1 structure to other anti-nucleic acid Fab structures reveals a common ssDNA recognition module consisting of Tyr L32, a hydrogen bonding residue at position L91, and an aromatic side-chain from the tip of complementarity determining region H3. The structure also provides a framework for interpreting previously determined thermodynamics data, and this analysis suggests that hydrophobic desolvation might underlie the observed negative enthalpy of binding. Finally, Arg side-chains from complementarity determining region H3 appear to play a novel role in DNA-1. Rather than forming ion pairs with dT5, Arg contributes to oligo(dT) recognition by helping to maintain the structural integrity of the combining site. This result is significant because antibody pathogenicity is thought to be correlated to the Arg content of anti-DNA antibody hypervariable loops.  相似文献   

7.
8.
Recognition of the 5' splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5' splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5' splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5' splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5' splice site through base pairing with the 5' end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5' splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5' splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5' splice site in a mammalian preassembled penta-snRNP complex.  相似文献   

9.
tRNA splicing is essential in yeast and humans and presumably all eukaryotes. The first two steps of yeast tRNA splicing, excision of the intron by endonuclease and joining of the exons by tRNA ligase, leave a splice junction bearing a 2'-phosphate. Biochemical analysis suggests that removal of this phosphate in yeast is catalyzed by a highly specific 2'-phosphotransferase that transfers the phosphate to NAD to form ADP-ribose 1"-2" cyclic phosphate. 2'-Phosphotransferase catalytic activity is encoded by a single essential gene, TPT1, in the yeast Saccharomyces cerevisiae. We show here that Tpt1 protein is responsible for the dephosphorylation step of tRNA splicing in vivo because, during nonpermissive growth, conditional lethal tpt1 mutants accumulate 2'-phosphorylated tRNAs from eight different tRNA species that are known to be spliced. We show also that several of these tRNAs are undermodified at the splice junction residue, which is always located at the hypermodified position one base 3' of the anticodon. This result is consistent with previous results indicating that modification of the hypermodified position occurs after intron excision in the tRNA processing pathway, and implies that modification normally follows the dephosphorylation step of tRNA splicing in vivo.  相似文献   

10.
Hemin was attached covalently to the 5'-terminus of the 14-mer d(pTGACCCTCTT.CCC)rA and was shown, in the presence of oxygen and a reducing agent, to be active in the cleavage of the complementary sequence (position 261-274) in a 303 nucleotide-long DNA fragment. The yield of the cleavage products reached approximately 50%, the cleavage locus comprising two bases (G275 and G276).  相似文献   

11.
Mouse DNA sequences complementary to small nuclear RNA U1.   总被引:5,自引:4,他引:1       下载免费PDF全文
A mouse genomic library was screened for sequences complementary to U1 nuclear RNA. Out of the eight clones tested, none contained more than one copy of U1. Six of them were identical and one of those (clone 0U1-XIII) was further analyzed. This latter clone contained no other gene for discrete species of small size RNA in the 8 Kb EcoRI fragment encoding U1. A 248 bp Bg1II fragment from 0U1-XIII encompassing the full length of U1 as well as flanking regions on both sides has been subcloned and sequenced in M13 phage. Although the coding region was 96.5% homologous to rat U1a RNA, there is no direct evidence that this clone is a true gene. 3' and 5' flanking sequences of this as well as other published clones have been searched for homologies and the results of this search are discussed.  相似文献   

12.
Evolutionary origin of the U6 small nuclear RNA intron.   总被引:4,自引:2,他引:2       下载免费PDF全文
U6 is the most conserved of the five small nuclear RNAs known to participate in pre-mRNA splicing. In the fission yeast Schizosaccharomyces pombe, the single-copy gene encoding this RNA is itself interrupted by an intron (T. Tani and Y. Ohshima, Nature (London) 337:87-90, 1989). Here we report analysis of the U6 genes from all four Schizosaccharomyces species, revealing that each is interrupted at an identical position by a homologous intron; in other groups, including ascomycete and basidiomycete fungi, as well as more distantly related organisms, the U6 gene is colinear with the RNA. The most parsimonious interpretation of our data is that the ancestral U6 gene did not contain an intron, but rather, it was acquired via a single relatively recent insertional event.  相似文献   

13.
14.
The quantitative parameters of cooperative binding of deoxyribooligonucleotides to adjacent sites by double helix formation have been determined as a function of sequence composition at the junction. The base stacks 5'-Py/p-Py-3', 5'-Pu/p-Py-3' and 5'-Pu/p-Pu-3' (p is phosphate group, Py and Pu are pyrimidine and purine nucleoside, respectively) including mismatches on the 3'-side of the junction were studied using complementary addressed modification titration (CAMT) at 25 degrees C and pH 7.5, 0.16 M NaCl, 0.02 M Na2HPO4, 0.1 mM EDTA. The equilibrium binding constants of alkylating derivatives of 8-mer oligonucleotides (reagents) with 22-mer oligonucleotides (targets) were determined using the dependence of the target limit modification extents on the concentrations of the reagents. The parameters of cooperativity were calculated as the ratio of binding constants of reagents in the presence and the absence of a second 8-mer oligonucleotides (effectors) occupying the adjacent site on the 22-mer targets. For the stacks 5'-Py/p-Py-3' the parameters of cooperativity were around unity both for matched and mismatched nucleotides at the junction indicating the absence of cooperativity. The parameters of cooperativity for the stacks 5'-Pu/p-Pu-3' were higher than for the stacks 5'-Pu/p-Py-3' in perfect and non-perfect duplexes. Discrimination of mismatches was higher in nicked than in normal duplexes.  相似文献   

15.
Base mismatches--non Watson-Crick pairing between bases--can arise in duplex DNA as a consequence of mutational events or by recombination. In a duplex, the sequence of the two bases involved, and those flanking the site of mismatch, determines the local structure and extent of destabilization of the helix. Base mismatches can arise also in recombination of nonhomologous strands, and their occurrence in Holliday recombination intermediates can influence the outcome of general or specialized recombination events. We have previously reported that the branch site in a DNA junction can interact selectively with a variety of ligands. Here we describe the thermodynamics of junctions containing T-T mismatches flanking the branch and show that these structures bind methidium and other intercalators with higher affinity than junctions lacking mismatches.  相似文献   

16.
17.
A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.  相似文献   

18.
The thermodynamics of the opening/closure process of a GC base pair located at the stem-loop junction of the SL1 sequence from HIV-1(Lai) genomic RNA was investigated in the context of a loop-loop homodimer (or kissing complex) using molecular dynamics simulation. The free energy, enthalpy and entropy changes for the closing reaction are 0 kcal x mol(-1), -11 kcal x mol(-1) and -0.037 kcal x mol(-1) x K(-1) at 300 degrees K respectively. Furthermore it is found that the free energy change is the same for the formation of a 11 nucleotide loop closed with UG and for the formation of a 9 nucleotide loop closed with GC. Our study evidences the high flexibility of the nucleotides at the stem-loop junction explaining the weak stability of this structure.  相似文献   

19.
20.
We describe a new case of lipoprotein lipase deficiency in a proband from a Southern-Italian family. Enzyme activity and mass were absent. Amplification and sequencing of individual exons, intron boundaries and the regulatory region revealed only one homozygous G----C transversion at the first nucleotide of intron 1. The single strand conformation polymorphism analysis proved to be a helpful tool for the identification of the single base mutation. Northern hybridization failed to reveal the presence of mature lipoprotein lipase mRNA. The mutation, which destroys the conserved dinucleotide at the junction site of intron 1, causes defective mRNA splicing and it is responsible for the deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号