首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Women aged 67-84 yr were randomly assigned to either resistance exercise (RE, n = 15) or control group (C, n = 14). RE group completed 10 wk of resistance training, whereas C group maintained normal activity. Blood samples were obtained from the RE group (at the same time points as for resting C) at rest, immediately after resistance exercise, and 2 h after exercise before (week 0) and after (week 10) training. Mononuclear cell (CD3+, CD3+CD4+, CD3+CD8+, CD19+, and CD3-CD16+CD56+) number, lymphocyte proliferative (LP) response to mitogen, natural cell-mediated cytotoxicity (NCMC), and serum cortisol levels were determined. Strength increased significantly in RE subjects (%change 8-repetition maximum = 148%). No significant group, exercise time, or training effects were found for CD3+, CD3+CD4+, or CD3+CD8+ cells, but there was a significant exercise time effect for CD3-CD16+CD56+ cells. LP response was not different between groups, across exercise time, or after training. NCMC was increased immediately after exercise for RE subjects at week 0 and for RE and C groups at week 10. The week 0 and week 10 NCMC values were above baseline for both RE and C groups 2 h after exercise. In conclusion, acute resistance exercise did not result in postexercise suppression of NCMC or LP, and 10 wk of resistance training did not influence resting immune measures in women aged 67-84 yr.  相似文献   

3.
Seventeen subjects performed resistance training of the leg extensor and flexor muscle groups two (2/wk) or three (3/wk) times per week. Changes in the relative myosin heavy chain (MHC) isoform contents (I, IIa and IIx) of the vastus lateralis and isometric, isokinetic and squat-lift one-repetition maximum (1RM) strength were compared between conditions after both a common training period (6 weeks) and number of training sessions (18). After 6 weeks and 18 sessions (9 weeks for the 2/wk group), increments in 1RM strength for the 3/wk and 2/wk groups were similar [effect size (ES) differences ≈0.3, 3/wk > 2/wk], whereas the 2/wk group presented greater isokinetic (ES differences = 0.3–1.2) and isometric (ES differences ≈0.7) strength increases than the 3/wk condition. A significant (P < 0.05) increase in MHC IIa percentage was evident for the 2/wk group after 18 sessions. Both training groups exhibited a trend towards a reduction in the relative MHC IIx and an increase in MHC IIa contents (ES range = 0.5–1.24). However, correlations between changes in the strength and MHC profiles were weak (r 2: 0.0–0.5). Thus, isometric and isokinetic strength responses to variations in training frequency differed from 1RM strength responses, and changes in strength were not strongly related to alterations in relative MHC content. Accepted: 19 March 1998  相似文献   

4.
Functional performance of lower limb muscles and contractile properties of chemically skinned single muscle fibers were evaluated before and after 8 wk of maximal effort stretch-shortening cycle (SSC) exercise training. Muscle biopsies were obtained from the vastus lateralis of eight men before and after the training period. Fibers were evaluated regarding their mechanical properties and subsequently classified according to their myosin heavy chain content (SDS-PAGE). After training, maximal leg extensor muscle force and vertical jump performance were improved 12% (P<0.01) and 13% (P<0.001), respectively. Single-fiber cross-sectional area increased 23% in type I (P<0.01), 22% in type IIa (P<0.001), and 30% in type IIa/IIx fibers (P<0.001). Peak force increased 19% in type I (P<0.01), 15% in type IIa (P<0.001), and 16% in type IIa/IIx fibers (P<0.001). When peak force was normalized with cross-sectional area, no changes were found for any fiber type. Maximal shortening velocity was increased 18, 29, and 22% in type I, IIa, and hybrid IIa/IIx fibers, respectively (P<0.001). Peak power was enhanced in all fiber types, and normalized peak power improved 9% in type IIa fibers (P<0.05). Fiber tension on passive stretch increased in IIa/IIx fibers only (P<0.05). In conclusion, short-term SSC exercise training enhanced single-fiber contraction performance via force and contraction velocity in type I, IIa, and IIa/IIx fibers. These results suggest that SSC exercises are an effective training approach to improve fiber force, contraction velocity, and therefore power.  相似文献   

5.
The purpose of this investigation was to examine the effects of 12 wk of progressive resistance training (PRT) on single muscle fiber myosin heavy chain (MHC; I, I/IIa, I/IIa/IIx, IIa, IIa/IIx, IIx) isoform proportions in young individuals. Young, untrained men (YM; n = 6) and women (YW; n = 6) (age = 22 +/- 1 and 25 +/- 2 yr for YW and YM, respectively) received pre- and post-PRT muscle biopsies from the right vastus lateralis for single muscle fiber MHC distribution by electrophoretic analysis (192 +/- 5 pre- and 183 +/- 6 post-fibers/subject analyzed; 4,495 fibers total). Data are presented as percentages of the total fibers analyzed per subject. The PRT protocol elicited an increase in the pure MHC IIa (Delta = + 24 and + 27; YW and YM, respectively; P < 0.05) with no change in the pure MHC I distribution. The hybrid MHC distributions decreased I/IIa/IIx (Delta = -2; YM and YW; P < 0.05), IIa/IIx (Delta = -13 and -19 for YM and YW, respectively; P < 0.05), and total hybrid fiber proportion (I/IIa + I/IIa/IIx + IIa/IIx) decreased (Delta = -19 and -30 for YM and YW, respectively; P < 0.05) with the training, as did the MHC IIx distribution (Delta = -2; YW only; P < 0.05). Alterations in the predominance of MHC isoforms within hybrid fibers (decrease in MHC I-dominant I/IIa and nondominant MHC IIa/IIx, increase in MHC IIa-dominant IIa/IIx; P < 0.05) appeared to contribute to the increase in the MHC IIa proportion. Electrophoresis of muscle cross sections revealed an approximately 7% increase (P < 0.05) in MHC IIa proportion in both groups, whereas the MHC IIx decrease by 7.5 and 11.6% post-PRT in YW and YM, respectively. MHC I proportions increase in YM by 4.8% (P < 0.05) post-PRT. These findings further support previous resistance training data in young adults with respect to the increase in the MHC IIa proportions but demonstrate that a majority of the change can be attributed to the decrease in single-fiber hybrid proportions.  相似文献   

6.
Lower limb exercise increases upper limb conduit artery blood flow and shear stress, and leg exercise training can enhance upper limb vascular function. We therefore examined the contribution of shear stress to changes in vascular function in the nonexercising upper limbs in response to lower limb cycling exercise training. Initially, five male subjects underwent bilateral brachial artery duplex ultrasound to measure blood flow and shear responses to 30-min cycling exercise at 80% of maximal heart rate. Responses in one forearm were significantly (P < 0.05) attenuated via cuff inflation throughout the exercise bout. An additional 11 subjects participated in an 8-wk cycle training study undertaken at a similar intensity, with unilateral cuff inflation around the forearm during each exercise bout. Bilateral brachial artery flow-mediated dilation responses to a 5-min ischemic stimulus (FMD%), an ischemic handgrip exercise stimulus (iEX), and endothelium-independent NO donor administration [glyceryl trinitrate (GTN)] were measured at 2, 4, and 8 wk. Cycle training increased FMD% in the noncuffed limb at week 2, after which time responses returned toward baseline levels (5.8 ± 4.1, 8.6 ± 3.8, 7.4 ± 3.5, 6.0 ± 2.3 at 0, 2, 4 and 8 wk, respectively; ANOVA: P = 0.04). No changes in FMD% were observed in the cuffed arm. No changes were evident in response to iEX or GTN in either the cuffed or noncuffed arms (P > 0.05) across the 8-wk intervention period. Our data suggest that lower limb cycle training induces a transient increase in upper limb vascular function in healthy young humans, which is, at least partly, mediated via shear stress.  相似文献   

7.
We examined the distribution of the myosin heavy chain (MHC) isoforms (I, IIa, IIx) of the leg muscles of three groups of men and women (40 +/- 8y) that completed unilateral lower limb suspension only (ULLS), ULLS plus resistance exercise (ULLS+RE), or RE only (RE) for 5 weeks. Muscle biopsies were obtained pre and post from the vastus lateralis of all three groups and the soleus of the ULLS group. Distributions of all three MHC isoforms in the vastus lateralis were unchanged (p<0.05) from pre to post with ULLS. The soleus muscle, which contained no measurable IIx isoform, was also unchanged (p< 0.05) from pre to post ULLS. These results suggest that the percent distribution of the MHC isoforms per unit muscle protein in both the vastus lateralis and soleus does not change during the first five weeks of simulated microgravity. Further, resistance exercise during five weeks of ULLS or ambulation does not appear to alter the MHC distribution per unit muscle protein of the vastus lateralis.  相似文献   

8.
The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to approximately 70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF(165) mRNA. Acute exercise induced an increase (P < 0.05) in total VEGF mRNA levels as well as VEGF(165) and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg (P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF(165) mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF(165) mRNA.  相似文献   

9.
Cellular antioxidant capacity and oxidative stress are postulated to be critical factors in the aging process. The effects of resistance exercise training on the level of skeletal muscle oxidative stress and antioxidant capacity have not previously been examined in older adults. Muscle biopsies from both legs were obtained from the vastus lateralis muscle of 12 men 71 +/- 7 years of age. Subjects then engaged in a progressive resistance exercise-training program with only one leg for 12 weeks. After 12 weeks, the nontraining leg underwent an acute bout of exercise (exercise session identical to that of the trained leg at the same relative intensity) at the same time as the last bout of exercise in the training leg. Muscle biopsies were collected from the vastus lateralis of both legs 48 h after the final exercise bout. Electron transport chain enzyme activity was unaffected by resistance training and acute resistance exercise (p < 0.05). Training resulted in a significant increase in CuZnSOD (pre--7.2 +/- 4.2, post--12.6 +/- 5.6 U.mg protein(-1); p = 0.02) and catalase (pre--8.2 +/- 2.3, post--14.9 +/- 7.6 micromol.min(-1).mg protein(-1); p = 0.02) but not MnSOD activity, whereas acute exercise had no effect on the aforementioned antioxidant enzyme activities. Furthermore, basal muscle total protein carbonyl content did not change as a result of exercise training or acute exercise. In conclusion, unilateral resistance exercise training is effective in enhancing the skeletal muscle cellular antioxidant capacity in older adults. The potential long-term benefits of these adaptations remain to be evaluated.  相似文献   

10.
Reductions in blood pressure that are associated with exercise training have been hypothesized to be the result of a sustained postexertional vascular alteration following single bouts of exercise. The purpose of this study was to determine whether a decrease in vascular sensitivity to vasoconstrictor agonists occurs after a single bout of exercise and whether this vascular alteration is sustained through various periods of exercise training. Vascular responses of abdominal aortic rings to norepinephrine (NE; 10(-9)-10(-4) M) were determined in vitro. Aortas were isolated from sedentary rats immediately after rats performed a single bout of treadmill exercise (30 m/min for 1 h); 24 h after the last exercise bout in rats exercised for 1 day; and 1, 2, 4, and 10 wk of training at 30 m/min, 60 min, 5 days/wk. Sensitivity to NE was only diminished after 10 wk of training. This diminished vascular sensitivity to NE was abolished with the removal of the endothelial cell layer. Furthermore, there were no reductions in developed tension or vascular sensitivity to the vasoconstrictor agonists KCl (10-100 mM), phenylephrine (10(-8)-10(-4) M), and arginine vasopressin (10(-9)-10(-5) M) in vessels either with or without the endothelial layer after a single bout of exercise. These data indicate that a single bout of exercise does not diminish aortic responsiveness to vasoconstrictor agonists and thus is not responsible for the diminished contractile responsiveness that occurs between 4 and 10 wk of moderate-intensity exercise training in rats. This vascular adaptation to exercise training appears to be mediated through an endothelium-dependent mechanism.  相似文献   

11.
12.
Aerobic exercise training combined with resistance training (RT) might prevent the deterioration of vascular function. However, how aerobic exercise performed before or after a bout of RT affects vascular function is unknown. The present study investigates the effect of aerobic exercise before and after RT on vascular function. Thirty-three young, healthy subjects were randomly assigned to groups that ran before RT (BRT: 4 male, 7 female), ran after RT (ART: 4 male, 7 female), or remained sedentary (SED: 3 male, 8 female). The BRT and ART groups performed RT at 80% of one repetition maximum and ran at 60% of the targeted heart rate twice each week for 8 wk. Both brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) after combined training in the BRT group did not change from baseline. In contrast, baPWV after combined training in the ART group reduced from baseline (from 1,025 +/- 43 to 910 +/- 33 cm/s, P < 0.01). Moreover, brachial artery FMD after combined training in the ART group increased from baseline (from 7.3 +/- 0.8 to 9.6 +/- 0.8%, P < 0.01). Brachial artery diameter, mean blood velocity, and blood flow in the BRT and ART groups after combined training increased from baseline (P < 0.05, P < 0.01, and P < 0.001, respectively). These values returned to the baseline during the detraining period. These values did not change in the SED group. These results suggest that although vascular function is not improved by aerobic exercise before RT, performing aerobic exercise thereafter can prevent the deteriorating of vascular function.  相似文献   

13.
The effects of spinal cord injury (SCI) on the profile of sarco(endo) plasmic reticulum calcium-ATPase (SERCA) and myosin heavy chain (MHC) isoforms in individual vastus lateralis (VL) muscle fibers were determined. Biopsies from the VL were obtained from SCI subjects 6 and 24 wk postinjury (n = 6). Biopsies from nondisabled (ND) subjects were obtained at two time points 18 wk apart (n = 4). In ND subjects, the proportions of VL fibers containing MHC I, MHC IIa, and MHC IIx were 46 +/- 3, 53 +/- 3, and 1 +/- 1%, respectively. Most MHC I fibers contained SERCA2. Most MHC IIa fibers contained SERCA1. All MHC IIx fibers contained SERCA1 exclusively. SCI resulted in significant increases in fibers with MHC IIx (14 +/- 4% at 6 wk and 16 +/- 2% at 24 wk). In addition, SCI resulted in high proportions of MHC I and MHC IIa fibers with both SERCA isoforms (29% at 6 wk and 54% at 24 wk for MHC I fibers and 16% at 6 wk and 38% at 24 wk for MHC IIa fibers). Thus high proportions of VL fibers were mismatched for SERCA and MHC isoforms after SCI (19 +/- 3% at 6 wk and 36 +/- 9% at 24 wk) compared with only ~5% in ND subjects. These data suggest that, in the early time period following SCI, fast fiber isoforms of both SERCA and MHC are elevated disproportionately, resulting in fibers that are mismatched for SERCA and MHC isoforms. Thus the adaptations in SERCA and MHC isoforms appear to occur independently.  相似文献   

14.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

15.
Since exercise training causes cardiac hypertrophy and a single bout induces mechanical stress to the heart, the present study aimed to characterize the activation patterns of multiple MAPK signaling pathways in the heart after a single bout of exercise or chronic exercises. The hearts of untrained rats received 5, 15, and 30 min of treadmill running exercise (Ex5 to Ex30) and rested for 0.5, 1, 3, 6, 12, and 24 h (PostEx0.5 to PostEx24) before subjecting them to the following different experiments. Activation of MAPKs (ERK, JNK, and p38) and MAPKKs (MEK1/2, SEK, and MKK3/6) increased immediately after acute exercise in a time-dependent manner, with ERK, JNK, and p38 peaking at Ex15, Ex15, and Ex30, respectively. Expression of immediate early genes (c-fos, c-jun, and c-myc) was augmented and activator protein-1 DNA binding activity was enhanced in untrained rats immediately after a single bout of exercise. The elevated levels of MAPKs declined to the resting levels within 24 h after exercise. In another set of experiments, following 4, 8, and 12 wk of exercise training, the rats exhibited significant cardiac hypertrophy by week 12. Activation of MAPKs in the 4-wk-trained rats increased after a 30-min single bout of exercise but decreased in the 8-wk group. Finally, the activity of MAPKs signaling in the 12-wk-trained rats exposed to an acute bout of exercise was unaltered. We conclude that exercise induces the activation of multiple MAPK (ERK, JNK, and p38) pathways in the heart, an effect that gradually declines with the development of exercise-induced cardiac hypertrophy.  相似文献   

16.
17.
18.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

19.
In adult zebrafish, 4 weeks of exercise training is known to induce an increase in mitochondrial enzymes such as citrate synthase (CS) when determined in mixed (red and white) muscle. However, this remodeling is not accompanied by changes in PGC-1α mRNA, a potent inducer of mitochondrial biogenesis in mammals. To further understand this response, we examined absolute and relative changes in red muscle area by histochemistry after 4 weeks of swim training. We also examined fiber-type specific responses in the expression of metabolic genes and putative regulators in red and white muscle of adult zebrafish at 1 and 8 weeks of training and in recovery from a single bout of exercise. Total red muscle area was unaltered after 4 weeks of training. The mRNA expression of CS was unaffected in red muscle, while it was increased in white muscle after 1 week of training and remained elevated at 8 weeks of training, suggesting an increase in oxidative capacity of this fiber type. In contrast, PGC-1α mRNA was elevated in both muscles only after 1 week of training. In both muscles, an acute bout of exercise rapidly (within 0–2 h post-exercise) induced PGC-1α mRNA and a delayed (24 h) increase in CS mRNA post-exercise. These results suggest complex temporal and spatial adaptive molecular responses to exercise in the skeletal muscles of zebrafish.  相似文献   

20.
Many obese elderly persons have impaired physical function associated with an increased chronic inflammatory response. We evaluated 12 wk of exercise (aerobic and resistance) or 12 wk of weight loss (approximately 7% reduction) on skeletal muscle mRNAs for toll-like receptor-4 (TLR-4), mechanogrowth factor (MGF), TNF-alpha, and IL-6 in 16 obese (body mass index 38+/-2 kg/m2) older (69+/-1 yr) physically frail individuals. Vastus lateralis muscle biopsies were obtained at 0 and 12 wk and analyzed by real-time RT-PCR. Body composition was assessed by dual-energy x-ray absorptiometry. Body weight decreased (-7.5+/-1.2 kg, P=0.001) in the weight loss group but not in the exercise group (-0.3+/-0.8 kg, P=0.74). Fat-free mass (FFM) decreased (-2.9+/-0.6 kg, P=0.010) in the weight loss group and increased (1.6+/-0.6 kg, P=0.03) in the exercise group. Exercise resulted in a 37% decrease in TLR-4 mRNA (P<0.05) while weight loss had no significant effect. Additionally, exercise led to a significant (50%) decrease in IL-6 and TNF-alpha mRNA (P<0.05) while weight loss had no effect. Exercise increased MGF mRNA (approximately 2 fold, P<0.05), but weight loss had no effect. In conclusion, exercise but not weight loss had a beneficial effect on markers of muscle inflammation and anabolism in frail obese elderly individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号