首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reperfusion therapy is widely used to treat acute myocardial infarction (AMI). However, further injury to the heart induced by rapidly initiating reperfusion is often encountered in clinical practice. A lack of pharmacological strategies in clinics limits the prognosis of patients with myocardial ischemia-reperfusion injury (MIRI). Dihydromyricetin (DMY) is one of the most abundant components in vine tea, commonly known as the tender stems and leaves of Ampelopsis grossedentata. The aim of this study was to evaluate the cardioprotection of DMY against myocardial ischemia-reperfusion (I/R) injury and to further investigate the underlying mechanism. An I/R injury was induced by left anterior descending coronary artery occlusion in adult male rats in vivo and a hypoxia–reoxygenation (H/R) injury in H9c2 cardiomyocytes in vitro. We found that DMY pretreatment provided significant protection against I/R-induced injury, including enhanced antioxidant capacity and inhibited apoptosis in vivo and in vitro. This effect correlated with the activation of the PI3K/Akt and HIF-1α signaling pathways. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of DMY against I/R-induced injury. In addition, the PI3K inhibitor partially blocked the effects of DMY on the upregulation of Bcl-2, Bcl-xl, procaspase-3, -8, and -9 protein expression and the downregulation of HIF-1α, Bnip3, Bax, Cyt-c, cleaved caspase-3, -8, and -9 protein expression. Collectively, these results showed that DMY decreased the apoptosis and necrosis by I/R treatment, and PI3K/Akt and HIF-1α plays a crucial role in protection during this process. These observations indicate that DMY has the potential to exert cardioprotective effects against I/R injury and the results might be important for the clinical efficacy of AMI treatment.  相似文献   

2.
Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations.  相似文献   

3.
Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R 2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity.  相似文献   

4.
Yang  Chen  Yu  Pengyi  Yang  Fangfang  He  Qian  Jiang  Bo  Zheng  Liang  Wang  Qianyun  Wang  Jun  Qiu  Hui  Wang  Hui  Zhang  Lei 《Journal of molecular histology》2021,52(4):693-703
Journal of Molecular Histology - Myocardial ischemia/reperfusion (I/R) injury induces cardiomyocyte apoptosis to deteriorate heart function. Thus, how to inhibit cardiomyocyte apoptosis is the...  相似文献   

5.
6.
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which PCL induces cancer cell death are still elusive. In the current study, we found that PCL could induce apoptosis and autophagy in murine fibrosarcoma L929 cells. Subsequently, we demonstrated that inhibition of Ras could promote L929 cell death, suggesting that Ras–Raf signaling pathway plays the key negative regulator in PCL-induced apoptosis. And, we showed that Ras-Raf signaling pathway was also involved in PCL-induced autophagy as the negative regulator. In addition, we found that class I phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway could play the negative regulator in PCL-induced apoptosis and autophagy. Taken together, these results demonstrate that PCL induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K–Akt signaling pathways.  相似文献   

7.
Long noncoding RNAs (lncRNAs) have been increasingly considered to play an important role in the pathological process of various cardiovascular diseases, which often bind to the proximal promoters of the protein-coding gene to regulate the protein expression. However, the functions and mechanisms of lncRNAs in cardiomyocytes have not been fully elucidated. High-throughput RNA sequencing was performed to identify the differently expressed lncRNAs and messenger RNAs (mRNAs) between acute myocardial infarction (AMI) rats and healthy controls. One novel lncRNA FGF9-associated factor (termed FAF) and mRNAs in AMI rats were verified by bioinformatics, real-time polymerase chain reaction or western blot. Moreover, RNA fluorescence in situ hybridization was performed to determine the location of lncRNA. Subsequently, a series of in vitro assays were used to observe the functions of lncRNA FAF in cardiomyocytes. The expression of lncRNA FAF and FGF9 were remarkably decreased in ischemia–hypoxia cardiomyocytes and heart tissues of AMI rats. Overexpression of FAF could significantly inhibit cardiomyocytes apoptosis induced by ischemia and hypoxia. Conversely, knockdown of lncRNA FAF could promote apoptosis in ischemia–hypoxia cardiomyocytes. Moreover, overexpression of lncRNA FAF could also increase the expression of FGF9. Knockdown of the FGF9 expression could promote apoptosis in cardiomyocytes with the insult of ischemia and hypoxia, which was consistent with the effect of lncRNA FAF overexpression on cardiomyocyte apoptosis. Mechanistically, FGF9 inhibited cardiomyocytes apoptosis through activating signaling tyrosine kinase FGFR2 via phosphoinositide 3-kinase/protein kinase B signaling pathway. Thus, lncRNA FAF plays a protective role in ischemia–hypoxia cardiomyocytes and may serve as a treatment target for AMI.  相似文献   

8.
9.
Hou  Daorong  Fu  Heling  Zheng  Yuan  Lu  Dan  Ma  Yuanwu  Yin  Yuan  Zhang  Lianfeng  Bao  Dan 《Transgenic research》2022,31(1):107-118
Transgenic Research - Uncoupling protein 1 (UCP1) was found exclusively in the inner membranes of the mitochondria of brown adipose tissue (BAT). We found that UCP1 was also expressed in heart...  相似文献   

10.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We investigated the cardioprotective mechanism of IMD1–53 in the in vivo rat model of myocardial ischemia/reperfusion (I/R) injury and in vitro primary neonatal cardiomyocyte model of hypoxia/reoxygenation (H/R). Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride staining. Cardiomyocyte viability was determined by trypan blue staining, cell injury by lactate dehydrogenase (LDH) leakage, and cardiomyocyte apoptosis by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assay, Hoechst staining, gel electrophoresis and caspase 3 activity. The translocation of mitochondrial cytochrome c of myocardia and expression of apoptosis-related factors Bcl-2 and Bax, phosphorylated Akt and phosphorylated GSK-3β were determined by western blot analysis. IMD1–53 (20 nmol/kg) limited the myocardial infarct size in rats with I/R; the infarct size was decreased by 54%, the apoptotic index by 30%, and caspase 3 activity by 32%; and the translocation of cytochrome c from mitochondria to cytosol was attenuated. IMD1–53 increased the mRNA and protein expression of Bcl-2 and ratio of Bcl-2 to Bax by 81 and 261%, respectively. IMD1–53 (1 × 10−7 mol/L) inhibited the H/R effect in cardiomyocytes by reducing cell death by 43% and LDH leakage by 16%; diminishing cellular apoptosis; decreasing caspase 3 activity by 50%; and increasing the phosphorylated Akt and GSK-3β by 41 and 90%, respectively. The cytoprotection of IMD1–53 was abolished with LY294002, a PI3K inhibitor. In conclusion, IMD1–53 exerts cardioprotective effect against myocardial I/R injury through the activation of the Akt/GSK-3β signaling pathway to inhibit mitochondria-mediated myocardial apoptosis.  相似文献   

11.
Cerebral ischemic injury remains associated with high mortality rates and lacks effective therapeutic intervention. Berberine (BBR) possesses anti-oxidant, anti-inflammatory, and anti-tumor activities, as well as potent neuroprotective effects. Although recent studies have examined the neuroprotective effects of berberine, little is known regarding its usefulness in treating cerebral ischemia. Thus, the aim of this study is to investigate the possible effect and the mechanism of berberine against cerebral ischemic injury using the middle cerebral artery occlusion (MCAO) model. Rats were randomly divided into three groups: control group, MCAO group, and MCAO?+?BBR group. Modified neurological severity score tests (mNSS) and infarct volumes were measured to determine the neuroprotective effects of berberine. Neuronal survival in striatum was examined by TUNEL staining and immunohistochemistry. Western blotting measured the expression of BDNF, TrkB, p-Akt and cleaved caspase-3. The results demonstrated that BBR could significantly protect against MCAO. Berberine also increased the expression of BDNF, TrkB, and p-Akt, which were reduced after MCAO. Furthermore, treatment with BBR declined the apoptosis-related proteins induced by MCAO. However, treatment with LY294002 (PI3K inhibitor) reversed the BBR-induced increases in BDNF and p-Akt proteins and decreased cleaved caspase-3 protein expression in focal cerebral ischemic rats. In summary, our results demonstrated that BBR could exert neuroprotective effects through reduction of striatum apoptosis via the BDNF–TrkB–PI3K/Akt signaling pathway.  相似文献   

12.
13.
As ligands of the sugar gustatory receptors, sugars have been known to activate the insulin/insulin-like growth factor signaling pathway; however, the precise pathways that are activated by the sugar-bound gustatory receptors in insects remain unclear. In this study, we aimed to investigate the signaling cascades activated by NlGr11, a sugar gustatory receptor in the brown planthopper Nilaparvata lugens (Stål), and its ligand. Galactose-bound NlGr11 (galactose-NlGr11) activated the -phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascade via insulin receptor (InR) and Gβγ in vitro. In addition, galactose-NlGr11 inhibited the adenosine monophosphate-activated protein kinase (AMPK) phosphorylation by activating the AKT-phosphofructokinase (PFK)-ATP signaling cascade in vitro. Importantly, the InR-PI3K-AKT-PFK-AKT signaling cascade was activated and the AMPK phosphorylation was inhibited after feeding the brown planthoppers with galactose solution. Collectively, these findings confirm that NlGr11 can inhibit AMPK phosphorylation by activating the PI3K-AKT-PFK-ATP signaling cascades via both InR and Gβγ when bound to galactose. Thus, our study provides novel insights into the signaling pathways regulated by the sugar gustatory receptors in insects.  相似文献   

14.
Inflammation and apoptosis are two key factors contributing to secondary brain injury after intracerebral hemorrhage (ICH). In the present study, we explored the neuroprotective role of methylene blue (MB) in ICH rats and studied the potential mechanisms involved. Rats were subjected to local injection of collagenase IV in the striatum or sham surgery. We observed that MB treatment could exert a neuroprotective effect on ICH by promoting neurological scores, decreasing the brain water content, alleviating brain–blood barrier disruption, and improving the histological damages in the perihematomal areas. Furthermore, we demonstrated that the various mechanisms underlying MB’s neuroprotective effects linked to inhibited apoptosis and inhibited neuroinflammation. In addition, wortmannin, a selective inhibitor of phosphoinositide 3-kinase (PI3K), could reverse the antiapoptotic and anti-inflammatory effects of MB, which suggested that the PI3K–Akt pathway played an important role. In conclusion, these data suggested that MB could inhibit apoptosis and ameliorate neuroinflammation after ICH, and its neuroprotective effects might be exerted via the activation of the PI3K/Akt/GSK3β pathway.  相似文献   

15.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

16.
The current research was intended to evaluate the impact of 6-shogaol in rodent model of ischemic-reperfusion induced- brain injury and also assessed 6-shogaol enhanced sevoflurane's neuroprotective effects. Ischemic-Reperfusion (I/R) injury was induced by middle cerebral artery occlusion (MCAO) method in Sprague-Dawley rats. A separate group of animal was exposed to sevoflurane (2.5%) post-conditioning for 1 h immediately after reperfusion. The 6-shogaol (25 mg or 50 mg/kg body weight) was orally administered to treatment group rats for 14 days and then subjected to I/R. The 6-shogaol treatment along with/without sevoflurane post-conditioning reduced the number of apoptotic cell counts, brain edema and cerebral infarct volume. The western blotting analysis revealed a significant stimulation of the PI3K/Akt/mTOR signal pathway. RT-PCR and western blotting studies revealed improved expressions of HIF-1α and HO-1 at both gene level and protein levels. I/R induced neurological deficits were also alleviated on sevoflurane post-conditioning with/without 6-shogaol treatment. The present findings revealed that pre-treatment with 6-shogoal enhanced the neuroprotective properties of sevoflurane post-conditioning, illustrated the efficacy of the compound against I/R injury.  相似文献   

17.
Dual-specificity protein phosphatases (DUSP) also known as mitogen-activated protein kinase (MAPK) phosphatases (MKPs) can dephosphorylate MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. DUSP1-mediated JNK dephosphorylation has been found to play an antiapoptotic role against cardiac ischemia–reperfusion (I/R) injury. However, the regulation of DUSP1–JNK pathway remains unclear. In the current study, ubiquitin-specific peptidase 49 (USP49) expression in human AC16 cardiomyocytes following I/R injury was measured by real-time polymerase chain reaction and western blot analysis. Cell viability, apoptosis, the Bax, Bcl-2, and DUSP1 expression, and the activity of MAPKs in AC16 cardiomyocytes following indicated treatment was measured by CCK-8, flow cytometry, and western blot analysis. The direct interaction between USP49 and DUSP1 was measured by coimmunoprecipitation and ubiquitination analysis. The effect of USP49 on apoptosis and JNK activity in rat cardiomyocytes following I/R injury was also measured by TUNEL and western blot analysis. Here, we found that USP49 expression was time-dependently increased in AC16 cardiomyocytes following I/R. I/R-induced cell apoptosis and JNK1/2 activation both in in vivo and in vitro reversed by USP49 overexpression in AC16 cardiomyocytes. Inhibiting JNK1/2 activation significantly inhibited USP49 knockdown-induced the cell viability inhibition, apoptosis and the JNK1/2 activation in AC16 cardiomyocytes. Moreover, USP49 positively regulated DUSP1 expression through deubiquitinating DUSP1. Overall, our findings establish USP49 as a novel regulator of DUSP1–JNK1/2 signaling pathway with a protective role in cardiac I/R injury.  相似文献   

18.
Bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to be a promising cell sources for cardiac regeneration. Poor survival rate of transplanted BMSCs in infarcted myocardium attenuated its clinical application. It’s reported that stromal-derived factor-1 (SDF-1) could protect progenitor cells including endothelial progenitor cells and embryonic stem cells from apoptosis. But little is known whether SDF-1α protein has the same protective effects on BMSCs under conditions of hypoxia and serum deprivation (hypoxia/SD). In present study, we verified that SDF-1α (0.50–2.0 μg/ml) inhibited hypoxia/SD induced apoptosis of BMSCs through mitochondrial pathway. After administration of SDF-1α, the loss of mitochondrial membrane potential and cytochrome c released from mitochondria to cytosol were significantly inhibited, and caspase 3 activity also declined. Furthermore, the effect of SDF-1α on mitochondrial pathway was neutralized by using PI3K inhibitor (Wortmannin) and ERK1/2 inhibitor (U0126). Our observations suggested that SDF-1α inhibits hypoxia/SD induced BMSCs apoptosis through PI3K/Akt and ERK1/2 signaling pathways. These data also imply that the anti-apoptotic effect mediated by SDF-1α may enhance cell survival after cell transplantation.  相似文献   

19.
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.  相似文献   

20.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We investigated the cardioprotective mechanism of IMD1-53 in the in vivo rat model of myocardial ischemia/reperfusion (I/R) injury and in vitro primary neonatal cardiomyocyte model of hypoxia/reoxygenation (H/R). Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride staining. Cardiomyocyte viability was determined by trypan blue staining, cell injury by lactate dehydrogenase (LDH) leakage, and cardiomyocyte apoptosis by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assay, Hoechst staining, gel electrophoresis and caspase 3 activity. The translocation of mitochondrial cytochrome c of myocardia and expression of apoptosis-related factors Bcl-2 and Bax, phosphorylated Akt and phosphorylated GSK-3β were determined by western blot analysis. IMD1-53 (20 nmol/kg) limited the myocardial infarct size in rats with I/R; the infarct size was decreased by 54%, the apoptotic index by 30%, and caspase 3 activity by 32%; and the translocation of cytochrome c from mitochondria to cytosol was attenuated. IMD1-53 increased the mRNA and protein expression of Bcl-2 and ratio of Bcl-2 to Bax by 81 and 261%, respectively. IMD1-53 (1 × 10−7 mol/L) inhibited the H/R effect in cardiomyocytes by reducing cell death by 43% and LDH leakage by 16%; diminishing cellular apoptosis; decreasing caspase 3 activity by 50%; and increasing the phosphorylated Akt and GSK-3β by 41 and 90%, respectively. The cytoprotection of IMD1-53 was abolished with LY294002, a PI3K inhibitor. In conclusion, IMD1-53 exerts cardioprotective effect against myocardial I/R injury through the activation of the Akt/GSK-3β signaling pathway to inhibit mitochondria-mediated myocardial apoptosis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号